

White Paper

Navigating AI as a Family

CAREGIVERS' PERSPECTIVES
AND STRATEGIES

Jennifer D. Rubin
Ella J. Lombard
Katharine Chen
Riddhi Divanji
Aehong Min

Emani Dotch
Ariel Han
Kelli Dickerson
Gillian Hayes
Candice Odgers

foundry10

January 2025

ABOUT THE AUTHORS

Jennifer D. Rubin, Ph.D., Senior Researcher, foundry10, jen@foundry10.org

Jennifer D. Rubin is the Principal Investigator of the Digital Technologies and Education Lab at foundry10. She holds a dual Ph.D. in Psychology and Gender and Women's Studies from the University of Michigan, where she explored how new media technologies mirror, magnify, and complicate self-presentation strategies for young people. Before foundry10, she worked as a Senior User Experience Researcher at Meta, leading foundational research on content recommendation systems. Jennifer is passionate about how technological advancements, such as artificial intelligence and emerging digital communities, can be used to improve the way we learn and collaborate.

Ella J. Lombard, Ph.D., Postdoctoral Research Scientist, foundry10, ella@foundry10.org

Ella J. Lombard is a Postdoctoral Research Scientist at foundry10. She holds a Ph.D. in Psychology from the University of Washington, where she studied the effects of identity safety cues on closing gaps for underrepresented groups in educational and professional spaces. She received her B.A. in Psychology and Creative Writing from Northwestern University. Ella is passionate about leveraging data-backed insights to improve student outcomes, promote learning, and increase educational equity.

Katharine Chen, Assistant Researcher, foundry10, kat@foundry10.org

Katharine Chen is an Assistant Researcher at foundry10. Katharine is passionate about social psychology and approaching research from an intersectional lens. She received her bachelor's degree in Philosophy from Macalester College, with a concentration in Cognitive Science and a double minor in Psychology and Linguistics. Before coming to foundry10, Katharine volunteered at various youth-serving organizations in the Seattle area and worked as a writing tutor for her college.

Riddhi Divanji, M.Ed., Associate Researcher, foundry10, riddhi@foundry10.org

Riddhi Divanji is an Associate Researcher and leads the Technology, Media, and Information Literacy team at foundry10. She holds an M.Ed. in Measurement and Statistics from the Department of Educational Psychology at the University of Washington College of Education. Her interests include investigating the use and value of emerging learning technologies in K-12 classrooms. Riddhi works at the intersection of research, educational programming, and philanthropy to ensure young people are equipped with the tools to safely, responsibly, and effectively consume and create with technology.

Aehong Min, Ph.D., Postdoctoral Researcher, University of California, Irvine, aehongm@uci.edu

Aehong Min is a Postdoctoral Scholar at the University of California, Irvine, holding a Ph.D. in Informatics from Indiana University Bloomington. Her research focuses on designing technologies that promote well-being and health through collaborative work. Specifically, she is currently studying informal caregivers and developing technologies to enhance their collaborative efforts with others, aiming to alleviate the burdens associated with caregiving.

Emani Dotch, Graduate Student Researcher, University of California, Irvine, dotche@uci.edu

Emani Dotch is a fourth-year Ph.D. candidate at the University of California, Irvine, where she conducts research in the Social & Technological Action Research (STAR) Group. Her work focuses on human-computer interaction, assistive technologies, and accessibility, specifically investigating how technology can be designed to support the needs of neurodiverse populations.

Ariel Han, Ph.D., Postdoctoral Researcher, University of Southern California, arielhan@usc.edu

Ariel Han is a Postdoctoral Scholar of Technology, Innovation, and Learning at the University of Southern California. Ariel received her Ph.D. from the University of California, Irvine informatics department, where she worked at the Creativity Labs and Connected Learning Lab. Ariel's research focuses on the intersection of AI, educational technology, learning sciences, and Human-Computer Interaction (HCI). She investigates fundamental questions on how youths interact and collaborate with AI-powered tools and agents to empower teaching and learning.

Kelli Dickerson, Ph.D., CERES Director of Research,
University of California, Irvine, kelli.dickerson@uci.edu

Kelli Dickerson is a Research Scientist at the University of California, Irvine and the Director of Research for CERES (Connecting the EdTech Research EcoSystem). She holds a Ph.D. in Developmental Psychology from the University of California, Irvine. Her research focuses on how early experiences shape children's and adolescents' health and well-being, and how digital tools and technologies can be used to promote youth health and development.

Gillian Hayes, Ph.D., Robert A. and Barbara L. Kleist Professor of Informatics,
University of California, Irvine, gillianrh@ics.uci.edu

Gillian Hayes is the Robert A. and Barbara L. Kleist Professor of Informatics with courtesy appointments in Computer Science, Education, and Pediatrics at University of California, Irvine. She is also the Vice Provost for Academic Personnel. She holds a Ph.D. in Computer Science from the Georgia Institute of Technology. Her research is in the areas of human-computer interaction, educational and assistive technologies, and health informatics.

Candice Odgers, Ph.D., Associate Dean for Research & Professor of Psychology,
University of California, Irvine, codgers@uci.edu

Candice Odgers is a Professor of Psychology and Associate Dean for Research at the University of California, Irvine. She has expertise in adolescent mental health and experience sampling methodologies using mobile technologies. Her research focuses on how early, daily, and online experiences influence children's health and development.

TABLE OF CONTENTS

Executive Summary	5
Key Takeways	6
Introduction	7
Current Research	8
How We Did This	9
Key Findings	11
Recommendations	33
Conclusion	43
References	44
Supplement	49

ACKNOWLEDGEMENTS

This project was in collaboration with the Connecting the EdTech Research EcoSystem (CERES) network.

We are grateful to Erika Frost (frostdesignstrategy.com) for support with the design of this report.

This project was supported in part by an NSF RAPID Award (#2334172).

Suggested Citation

Rubin, J. D., Lombard, E. J., Chen, K., Divanji, R., Min, A., Dotch, E., Han, A., Dickerson, K., Hayes, G., & Odgers, C. (2025). *Navigating AI as a family: Caregivers' perspectives and strategies* [White paper]. foundry10. <https://www.foundry10.org/resources/navigating-ai-as-a-family>

Executive Summary

The proliferation of generative AI tools, such as ChatGPT, has the potential to rapidly transform family life. This white paper examines how caregivers in the United States perceive and navigate the integration of AI into their households. Our research focused on caregiver attitudes toward introducing AI to youth, concerns about its social impacts, and the perceived developmental readiness of youth to engage with AI tools.

We also explored strategies to help caregivers support youth's understanding and use of AI while considering potential risks like over-reliance on AI and ethical concerns such as academic integrity. By offering research-backed recommendations and resources, we aim to provide caregivers with tools to navigating AI use within family settings.

Key Takeaways

1

Caregiver perspectives on generative AI varied widely.

Caregivers expressed optimism about AI's educational potential and apprehension regarding its effects on children's critical thinking abilities and social and emotional development.

2

Most caregivers believed the optimal time to introduce generative AI discussions is between the ages of 10 and 12.

Caregivers recognized that adolescents' developing critical thinking and ethical reasoning capabilities position them well to grasp AI's complexities and limitations, including academic integrity and the accuracy of AI-generated content.

3

Four caregiver profiles emerged, highlighting different approaches to AI integration in families.

Patterns emerged in how caregivers approached AI within their family dynamics. To capture this variation, we developed four descriptive caregiver profiles: **The Curious Newcomer**, **The Discerning Optimist**, **The Concerned Critic**, and **The Tech-Savvy Enthusiast**. These profiles reflect common patterns in caregiver-child communication, considerations around the moral and ethical development of youth, and expectations for generative AI's role in family life.

Introduction

Generative AI is rapidly becoming integrated into the daily lives of youth, with these tools increasingly included in their learning environments (Dai et al., 2024; Luo et al., 2024; Song et al., 2024; Williams et al., 2024) and online spaces (Parra & Chatterjee, 2024; Wang et al., 2022). As youth explore these technologies, important questions arise about academic integrity (e.g., Bin-Nashwan et al., 2023; Perkins, 2023) and the appropriate level of encouragement or restriction in using AI tools (Klein, 2024). In response, many educators seek to support youth in building AI literacy (Dai et al., 2024; Su & Yang, 2024; Yim & Su, 2024). However, most current interventions have primarily focused on schools as the central hub for AI education, overlooking the diversity of learning environments shaping youths' understanding of AI.

Youth also learn about AI at home, where parents and other caregivers play a crucial role in shaping their experiences. As primary figures in their daily lives, caregivers can be powerful influences on how youth develop AI literacy. Joint-media engagement, in which caregivers and youth explore and interact with media together, can increase youth interest in the media source, catalyze learning, and improve caregiver-child relationships (Barron & Levinson, 2019; Ewin et al., 2021; Llorente et al., 2019; Zhang et al., 2022). When caregivers engage in joint AI literacy practices, the family becomes a crucial learning space where both youth and caregivers develop new AI skills together (Drugat et al., 2022). Through shared engagement with AI tools, caregivers can offer emotional support, facilitate cooperation among youth, guide and teach, and model AI exploration (Drugat et al., 2022).

However, communication between caregivers and youth about AI can be challenging. Many adults are only beginning to familiarize themselves with AI (Han et al., 2024), and few resources are available to help caregivers navigate these conversations (Drugat et al., 2022). Additionally, caregivers' perceptions of AI often differ from those of their children (Han et al., 2024). For example, while many caregivers express concerns about data privacy and excessive screen time, youth may be more inclined to see AI as an intelligent and helpful companion (Han et al., 2024). Youth also have higher levels of AI experience than their parents, and many use AI without their parents' knowledge (Common Sense Media, 2023; Madden et al., 2024). These challenges highlight the need for resources to support caregivers in effectively communicating with their children about AI.

Current Research

With AI technologies becoming more integrated into daily life, there is a growing need to understand caregivers' perspectives about AI's impact on youth. While much of the existing research has focused on AI use in educational settings, the home environment—where youth often interact with technologies like generative AI—is less frequently explored (Long et al., 2022). As a result, caregivers may navigate this landscape with limited resources to guide them in supporting their children's responsible use of AI.

Our research fills this gap by examining caregivers' perceptions of generative AI tools, their attitudes toward how youth use these technologies, and their expectations for AI's future role in family life. We also explore how caregivers communicate about AI, including the information they share, their concerns, and how they frame AI's role in their children's lives. These findings inform our evidence-based recommendations that offer practical strategies to help caregivers guide their families toward responsible AI use.

How We Did This

This mixed-methods study examined caregivers' perceptions of AI and its impact on their children. The research team conducted a national survey followed by focus groups with a subset of survey respondents. This report focuses on qualitative insights from those discussions. While our focus is on caregiver experiences, we have included quantitative data on teen and caregiver AI use to illustrate its role in the broader family context.

The survey was administered to a probability-based sample of U.S. caregivers of K-12 students and teens aged 13-17 drawn from the AmeriSpeak Panel, operated by NORC at the University of Chicago. This panel was designed to be representative of the U.S. household population. The NORC Institutional Review Board approved all study measures and procedures. Caregivers provided informed consent and completed the survey online between February 2024 and June 2024.

Focus group recruitment targeted participants from the initial survey who expressed interest in being contacted for follow-up research. To ensure a diverse range of perspectives, we established inclusion criteria to select caregivers representing various ethnicities, geographical locations, socioeconomic backgrounds, and genders. We recruited participants from June 2024 to July 2024, resulting in 11 focus groups with 32 caregivers. Each virtual focus group discussion was facilitated by two trained moderators and lasted approximately 90 minutes. All focus groups were audio-recorded and transcribed for analysis (see [Supplement](#) for participant information).

DATA ANALYSIS

Focus Group Data

We used Rapid Qualitative Inquiry (RQI; see [Vindrola-Padros, 2021](#)) to gather and analyze the qualitative data efficiently. This approach gave us rapid insights into complex issues surrounding caregivers' experiences with generative AI. Our RQI process involved several key stages:

► Team Formation and Collaboration

We formed a small, interdisciplinary research team that collaborated closely throughout the study. This team-based approach fostered diverse perspectives and expertise, enhancing the depth and breadth of analysis.

► Iterative Data Collection and Analysis

We initiated data collection and analysis concurrently. This iterative approach enabled us to refine our understanding of the topic as data emerged and adjust the focus group process in real-time. For example, after the initial focus groups, we found that some participants had limited knowledge of generative AI. In response, we introduced a definition of generative AI at the beginning of later focus groups to provide a common foundation for discussion.

► Team-Based Analysis Approach

Our approach to RQI centered on team-based analysis using a structured framework. After collaboratively reviewing the data, we organized and synthesized the information systematically through RQI tables. These tables allowed us to record key themes, patterns, illustrative quotes, and preliminary interpretations within the data analysis process.

In the second analysis stage, our team examined the RQI tables from each focus group and engaged in collaborative discussions to identify overarching themes. This approach allowed us to synthesize insights from diverse perspectives and uncover common threads in caregivers' perceptions and attitudes toward AI.

It is important to note that caregivers' approaches to AI were dynamic, often evolving over the course of the conversation. Influenced by their environments and responsive to the changing needs of their families, some participants adjusted their views on AI use as new perspectives emerged. This adaptability highlights caregivers' openness to rethinking their views on AI as they gained insights within the context of focus group discussions.

Survey Data

We conducted a preliminary analysis of survey data from 345 teens and 2,826 caregivers. The survey assessed their awareness and use of AI technologies, as well as their perceptions of the risks and opportunities these tools present. Our goal was to examine how teens and caregivers interact with AI, analyzing both their usage patterns and attitudes to identify key similarities and differences.

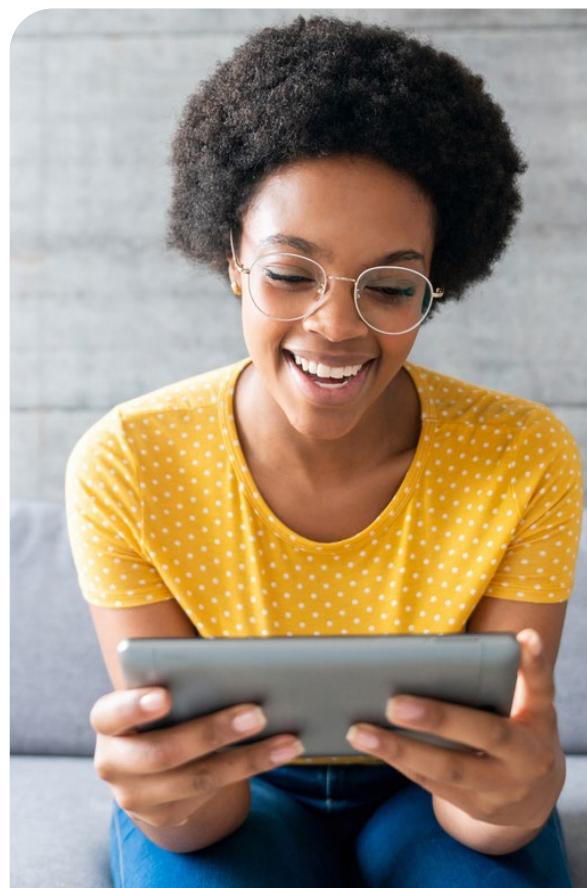
Key Findings

Caregiver Definitions of Generative AI

We began each focus group by asking caregivers to define the technology in their own words. Caregivers' knowledge of generative AI varied greatly, as did the specific tools they used and how they used them. Some caregivers understood the technical details behind how generative AI functions, while others had a more limited understanding. This variation in knowledge likely reflects caregivers' different experience levels with AI technologies. The definitions provided by participants fit into five categories that reflect the various approaches they took toward engaging with generative AI.¹

► Systems-Level Definition

Some participants ($N = 5$ of 32) felt confident in defining generative AI and explaining how it works. These participants had experimented with generative AI in their personal and/or professional lives and were able to provide definitions that went beyond a surface-level understanding. They explained how generative AI uses large datasets to train models capable of using statistics to create new content (e.g., text, images, or music), and they often emphasized that generative AI recognizes patterns and makes predictions based on training data. This understanding reflects a more technical perspective that highlights how these tools function.


"I would say it's a relatively new program or software that somehow assimilates huge amounts of data, including textual or image data that it's scraped from the web."

—TIMOTHY, FOCUS GROUP 6

► AI as a Creative Companion

Some participants ($N = 6$) described generative AI as a powerful enabler of creativity. When defining generative AI, they emphasized its ability to transform simple prompts into original works of art, literature, music, and other forms of media. Their perspective was often shaped by using AI tools for creative projects or viewing AI-generated content. For these caregivers, generative AI was seen as a tool that fosters artistic expression and expands creative possibilities.

¹ Participant definitions of generative AI could fit into multiple categories.

► AI as an Assistant

Some participants ($N = 9$) actively used generative AI tools to enhance efficiency in their personal and professional lives. They defined generative AI as a “co-pilot”² that worked alongside them by boosting productivity and providing helpful information for completing everyday tasks (e.g., recommendations for vacation, editing emails, suggestions for children’s birthday gifts). This perspective stemmed from their experiences using generative AI, which offered valuable suggestions but often required human oversight to address errors in the output. As a result, they saw generative AI not as a standalone solution but as a technology that complements human effort.

“[AI tools] were helpful in saving time for just getting started writing, doing a skeleton, but it wasn’t able to do much beyond that.”

—CRAIG, FOCUS GROUP 3

► AI as a Service Tool

Some participants ($N = 12$) primarily interacted with AI tools through customer service chatbots, voice assistants, or search features. For these participants, generative AI was mainly described as a service tool designed to assist with answering questions or facilitating customer service interactions. Their definitions reflected this perspective by viewing AI as a convenient resource that simplifies and streamlines everyday tasks, such as resolving issues with service providers or finding quick information online. This functional approach to AI highlighted its role as a practical tool valued more for its utility and efficiency than for its creative or technical capabilities.

► Comparison to Other Tools

Some participants ($N = 8$) defined generative AI by comparing it to familiar tools like Google, Wikipedia, or calculators. These comparisons indicate that this group of caregivers viewed generative AI as a more advanced and versatile version of these existing technologies—one that provides information and enhances content. However, this perspective often lacked a deeper understanding of how AI systems work, as generative AI is not a search engine but a technology that produces new content through sophisticated data-driven models. One important distinction drawn between generative AI and traditional search engine technologies was that AI tools help direct users to specific answers rather than providing a broad range of results.

“[Generative AI gives] access to information that I may not know exactly where to go for that information. Because you can find a lot of stuff in Google, but you can’t find everything from Google. It’s something that’s more elaborate than Google.”

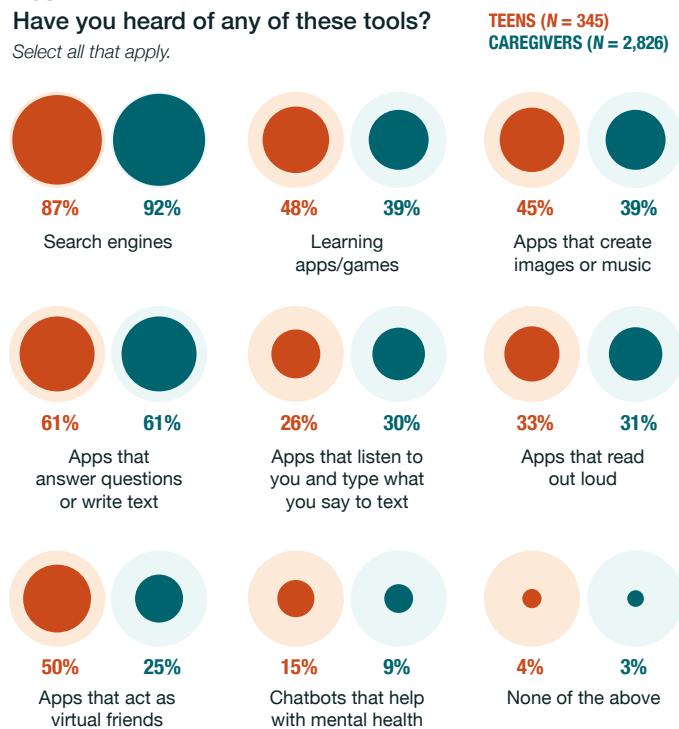
—EVANGELINE, FOCUS GROUP 5

² This research was conducted before Microsoft Copilot was in heavy use; the participant who used the term “co-pilot” did not appear to be referencing the Microsoft product.

AI Tool Usage within Families

We analyzed survey data on caregiver and teen AI use to better understand AI's role within the broader family context. This section examines their varying levels of familiarity with AI, differing usage patterns, and concerns about AI's impact on education and society.

► Awareness and Use of AI Tools


Teens and caregivers reported a high awareness of AI tools, with search engines that provide AI-generated results, like Google or Bing, being the most recognized (87% of teens and 92% of caregivers). Apps that answer questions or write text, such as ChatGPT or Bing Chat, were familiar to 61% of teens and caregivers. However, awareness of more specialized tools, such as virtual friend apps, was notably higher among teens (50%) than caregivers (25%). Actual usage within households reflected this trend, with caregivers reporting the highest use of search engines (94%) and learning apps (48%). In comparison, creative and text-generating apps were less frequently used (23% and 40%, respectively; see Figures 1 and 2).

Focus group findings revealed that ChatGPT was the generative AI tool caregivers were most familiar with. Participants typically viewed the use of AI at home as more straightforward and integrated into daily routines, which contrasts with more novel applications of generative AI tools like ChatGPT. For example, many participants commonly used voice assistants like Alexa for task management, such as setting reminders or controlling smart home devices. Despite the growing presence of AI tools in family life, most participants perceived familiar tools like ChatGPT as extensions of existing technology rather than conceptualizing generative AI tools as novel technology.

"I've used ChatGPT to write a quick message, but that's about it. It's just easier than thinking up what to say sometimes."

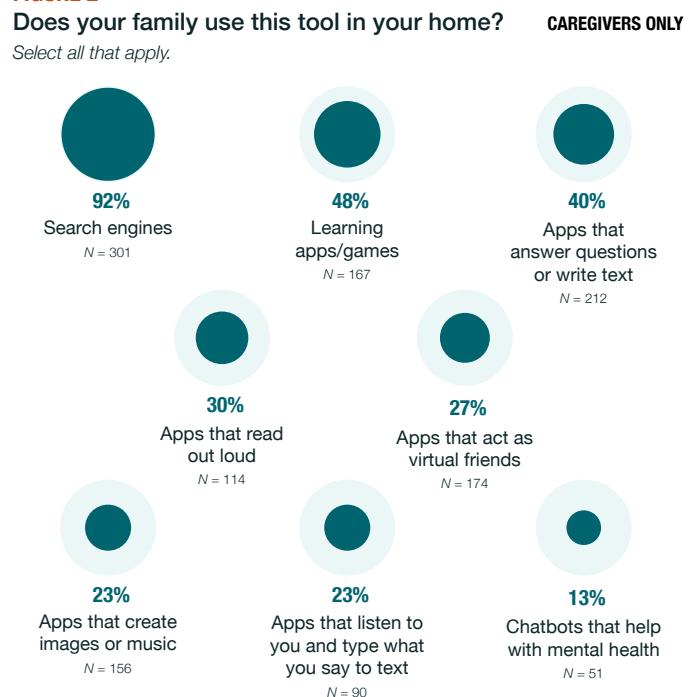

—CRAIG, FOCUS GROUP 3

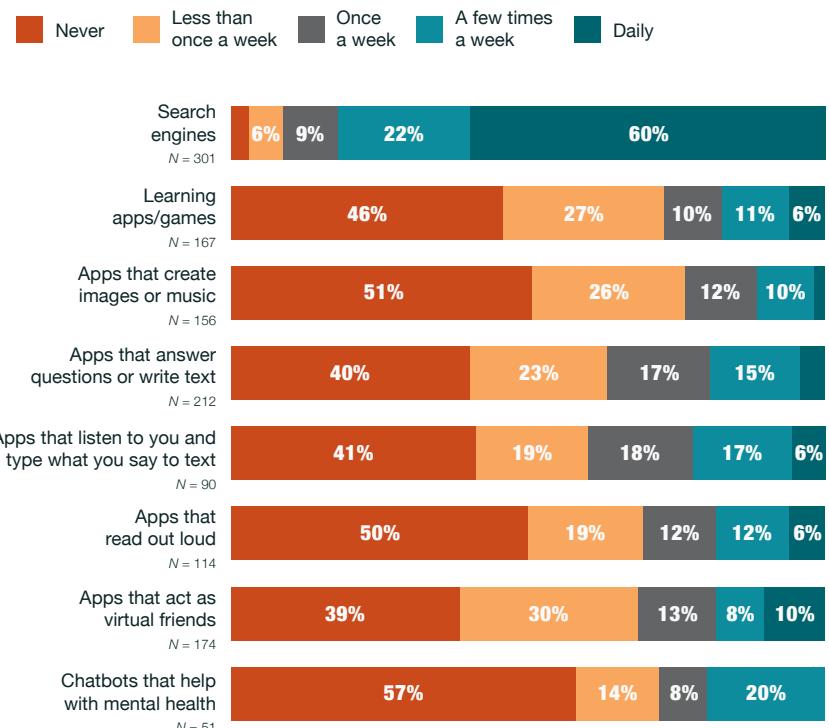
FIGURE 1

Note. Teens are ages 13-17 (M = 15.56, SD = 1.27). Caregiver are ages 18-84 (M = 42.19, SD = 9.23).

FIGURE 2

Note. Caregivers were only asked about use of tools they reported having heard of in Figure 1, hence varying sample sizes.

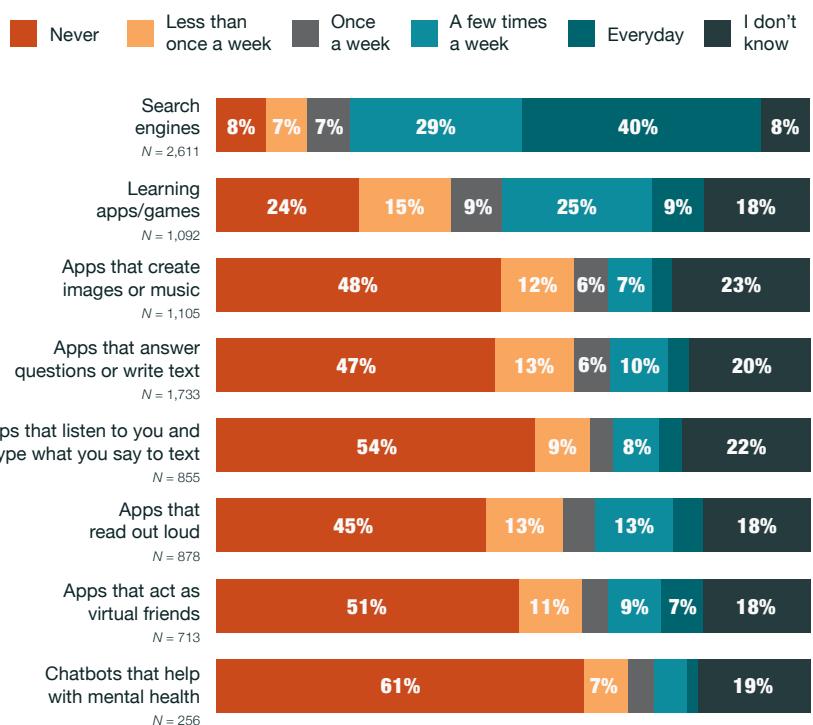
► Caregiver Perceptions of Teen AI Use


Examining trends at the aggregate level suggests that there may be discrepancies between caregivers' perceptions of teens' AI use and teens' actual reported use. For example, caregivers may underestimate how often teens use AI tools that answer questions or write text and those that act as virtual friends (see Figures 3 and 4). Teens may use other AI tools, such as learning-focused apps, less frequently than caregivers assume. Future research should further investigate these potential discrepancies. For most AI tools, around 20% of caregivers reported not knowing whether or how often their child used the tool (see Figures 3 and 4).

"I have children but I never really seen my daughters use AI or anything like that. So if they use it, so be it."

—BRITTANY, FOCUS GROUP 9

FIGURE 3
How often have you used these tools in the past month?


TEENS ONLY

Note. Teens were only asked about use for tools they reported having heard of in Figure 1, hence varying sample sizes.

FIGURE 4
How often has your [oldest child in K-12] used these tools in the past month?

CAREGIVERS ONLY

Note. Caregivers were only asked about use for tools they reported having heard of in Figure 1, hence varying sample sizes.

► Perceptions of AI Impact

Both teens and caregivers expressed mixed feelings about the impact of AI in education and society. A majority were uncertain (“maybe”) about AI’s potential to improve learning at school (63% of teens and 61% of caregivers) or health (47% of teens and 41% of caregivers). Concerns were prevalent regarding AI’s impact on independent problem-solving, with around half of teens and caregivers worried that AI might inhibit these skills (50% of teens and 49% of caregivers). Additionally, 49% of teens feared that AI could interfere with friendships, reflecting apprehension about AI’s role in social interactions.

► Concerns About AI Misuse

There was a shared recognition of AI’s potential for misuse, especially in enabling cheating at school, with 41% of teens and 44% of caregivers expressing concern. Privacy concerns were also significant, with 20% of teens and 37% of caregivers fearing AI might collect and store private information about them or their children. These findings underscore the need for clear guidelines and education on ethical AI use to address these concerns (see Figure 5; see [Perceptions of Generative AI and Its Impacts on Well-Being](#) for more discussion).

FIGURE 5
Generative AI will...

TEENS (N = 345)

No Maybe Yes

CAREGIVERS (N = 2,826)

No Maybe Yes

POSITIVE OPPORTUNITIES

Improve how I/children learn at school.

Improve my/children’s health.

Help me/children improve skills outside of school.

Help me/children learn things that I/they will need to know in my/their future careers.

Help me/children ask questions that I/they don’t feel comfortable asking adults.

Help me/children when I’m/they’re feeling lonely.

NEGATIVE RISKS

Stop me/children from being able to solve problems on my/their own.

Cause me/children to have problems with teachers or caregivers.

Stop me/children from interacting with friends.

Make it easier for students/children to cheat at school.

Spread false or wrong information.

Learn things about me/children that may be private.

Perceptions of Generative AI and Its Impacts on Well-Being

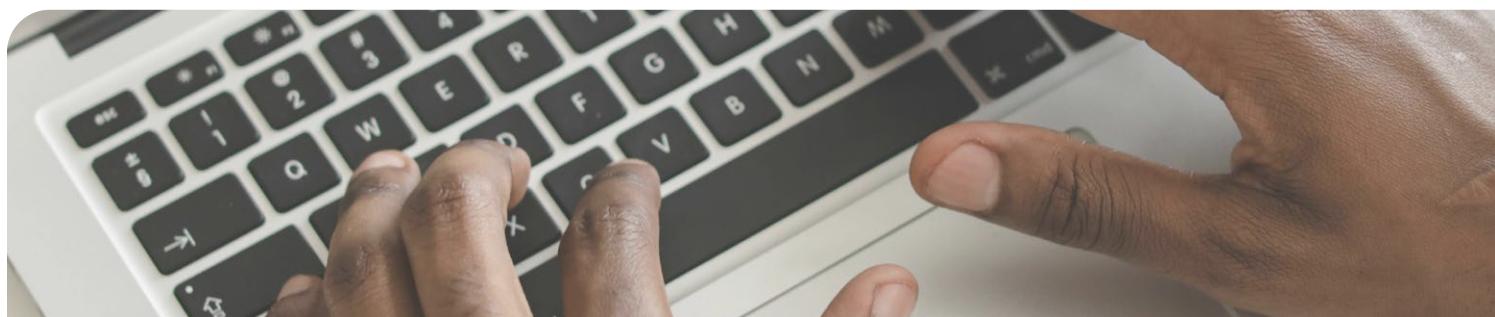
This section further explores caregivers' perceptions of generative AI's impact on families by examining how caregivers viewed the technology's potential benefits and challenges, including its effects on their families' well-being.

POSITIVE PERCEPTIONS

► Maximizing Task Completion

Many caregivers in this study viewed AI as a potential tool for boosting efficiency in personal and professional tasks. They appreciated AI's ability to handle routine and administrative work, allowing them to focus on more complex activities that require critical thinking and problem-solving. In professional settings, participants viewed AI as effectively reducing cognitive load by managing tasks like documentation and scheduling. They found AI helpful at home for organizing daily activities such as planning children's schedules and preparing meals. By streamlining these tasks, AI tools could reduce stress and free up time for families.

► Educational Benefits


Some participants saw generative AI as a promising tool for enhancing education through personalized learning experiences tailored to individual students' needs. They were excited about AI's ability to adapt to different learning styles and needs, providing customized support such as real-time feedback and accessibility tools. Adaptability was considered particularly beneficial for students who struggle in traditional settings or have specific learning challenges. Caregivers described how this targeted support could improve learning outcomes by reducing student stress and frustration.

"I think also from a mom's perspective, give me a grocery list and a menu for the week with healthy foods that are easy. Just generate that list for me, tell me what to get and my menu for the week."

—TERESA, FOCUS GROUP 1

"When they [students] get writer's block, they can see their way out of it by AI, not writing a whole story through it. So I think the responsibility will be that the first ideas or the initial part of it comes from yourself and your creativity. And then if you stumble, then you use it [AI]."

—JORDYN, FOCUS GROUP 6

► Brainstorming Partner

Several caregivers perceived generative AI as a valuable tool for brainstorming, generating ideas, creating outlines, or producing initial drafts of content. They found generative AI helpful in overcoming creative blocks by providing a project starting point or suggesting new directions. Participants noted that this support could ease work frustration by making tasks feel more manageable. However, participants also emphasized that while AI can provide valuable input, it cannot be fully trusted to produce accurate output. Participants warned that human oversight is essential to verify AI-generated content.

"Sometimes you're just, in spur of the moment—it's hard to come up with something if it's full writer's block. [Generative AI] was helpful, and it gave me a lot of ideas. And then I could ask it to tailor it more to my taste and personality."

—CRAIG, FOCUS GROUP 3

NEGATIVE PERCEPTIONS

► Privacy and Security Concerns

Across multiple focus groups, participants expressed concerns about data privacy and security when using AI, particularly around how these systems collect, store, and use personal information. Many caregivers worried about potential data breaches and a lack of transparency around data sharing, especially concerning the safety of their children's information. This uncertainty led some caregivers to call for stricter data protection measures, more explicit privacy policies, and greater accountability in safeguarding the privacy of minors.

"I've steered away from those [AI voice assistants] just because I don't like the idea that Amazon is constantly listening to me or Google is constantly listening. It just feels like a very blatant invasion of privacy that I'm not comfortable with."

—DAVID, FOCUS GROUP 10

► Ethical and Moral Implications

There was general agreement among participants that generative AI introduced several ethical and moral implications, particularly regarding decision-making and social impacts. Caregivers questioned who is responsible when AI causes harm and whether AI systems might inadvertently perpetuate biases in their programming. They also raised potential ethical issues with the use of AI in creative industries, especially concerning AI tools being trained on content without consent from the original creators. Additionally, they expressed fears about AI's potential to replace human judgment in critical areas, such as healthcare or education, where ethical reasoning and human oversight are crucial. Impacts on youth heightened these concerns, as caregivers worried about the risks of exposing their children to biased or unregulated AI systems.

"AI is a Pandora's box, so we're opening this box without really thinking too much about what's going to happen. It seems that there's potentially a lot of problems, ethical and otherwise, that are going to start coming out of this box."

—TIMOTHY, FOCUS GROUP 6

► Impact on Employment

Participants generally agreed that generative AI had the potential to replace jobs involving repetitive tasks or routine work. They worried about the long-term effects on the economy and feared widespread automation could lead to job displacement. Some caregivers also highlighted the risk of increased inequality, citing concerns that those who need access to retraining or educational opportunities might be left behind in an AI-driven economy. These concerns contributed to anxiety among some participants as they worried about the future job market and its implications for their families' financial stability. Caregivers also discussed how AI is impacting those who work in creative fields, as many AI tools were trained using artists' work and can be used to generate content in a number of mediums.

"All the talks that I've listened to, it brings up coding and accounting, and certain jobs that would probably be at risk in the upcoming years because generative AI would most likely take over most of that."

—ANDRE, FOCUS GROUP 11

► Impact on Skill Development and Social Interactions

Most participants perceived that excessive reliance on AI could negatively affect the skill development of youth. They worried that an over-dependence on AI for information might undermine critical thinking and problem-solving abilities, making it harder for youth to grow into their full potential as adults. Additionally, participants expressed fears that heavy use of AI might interfere with how youth develop social skills. Instead of engaging in real-life interactions, youth might turn to AI, which could limit their ability to form meaningful relationships with peers.

"You want something sweet? Make it yourself. Here are the ingredients. Look it up. You can have all the cake you want, but you got to make it. You got to learn how to do it, and then have it, as opposed to go to cupboard and get yourself a donut."

—TRISTAN, FOCUS GROUP 10

► Misinformation

Some participants highlighted the spread of misinformation through AI-generated content. They emphasized the importance of teaching youth to critically evaluate and verify information, as AI systems can sometimes produce incorrect or misleading content. One particularly troubling area was the rise of "deepfakes," where altered audio or visuals misrepresent someone's identity, words, or actions. Some participants worried that their children could be targeted by deepfakes used for bullying or harassment at school.

"I have seen it that people are taking minor's images and altering them. My daughter has shown me some things from social media. To me that's very scary."

—TERESA, FOCUS GROUP 1

CAREGIVER-CHILD COMMUNICATION ABOUT AI

To understand how caregivers navigate the evolving landscape of generative AI, we explored whether and how they are talking with their children about AI. A slight majority of caregivers reported having conversations about generative AI with their children (17 caregivers had conversations vs. 15 who did not). Participants reported initiating conversations to educate their children about responsible use of AI, address ethical concerns, or prepare them for future interactions with technology. For participants who did not initiate these conversations, their reasons included a lack of familiarity with AI, perceiving it as irrelevant to their children's current lives, and believing their children were too young to understand the information.

Developmental Timing and Considerations of AI Conversations

Across multiple focus groups, participants described 10 to 12 years old as the optimal time to start discussions about generative AI. At this developmental stage, youth are building critical thinking and communication skills. This growth makes them more capable of understanding complex topics like AI and its ethical implications, such as avoiding plagiarism and recognizing the limitations of AI-generated content. Youth at this stage are also developing more sophisticated moral reasoning (Gibbs, 2003; Kohlberg, 1984), which may equip them to navigate issues of academic integrity with more nuance.

Finally, the 10-12 age range heralds increased opportunities for unsupervised technology use, such as youth beginning to carry cell phones (Sun et al., 2023), commute more independently to and from school, and move between classrooms throughout the school day. Participants felt that introducing AI discussions during this period would allow caregivers to guide youth more effectively, as it may be a time period in which they both remain open to adult input and are equipped to engage meaningfully with these topics.

Other caregivers in the focus groups indicated that they did not discuss generative AI with their children because they believed them to be too young or because their children lacked exposure to technology more broadly. For example, some caregivers, particularly those with children in early elementary school or younger, noted that their children do not regularly use devices or computers, making AI seem irrelevant. Others expressed interest in their children learning basic skills on their own before introducing them to AI-enabled tools that might make those skills irrelevant, in a similar model to learning addition before learning to use a calculator. The consensus was that while AI is an important topic, many felt it was not yet applicable to their children's current experiences.

"I would say [AI should be introduced to youth] probably before the teenage years, but not quite in the younger elementary years. I would say probably between 10 and 12 their attention span is a little longer. They have that ability to kind of retain more information, but it's not too old in their schooling where they're just so set in their ways on how they do things."

—EVANGELINE, FOCUS GROUP 5

"I definitely feel like my kids aren't either old enough or exposed enough to the type of things that make AI relevant to them. None of my kids have tablets or devices or regularly use a computer. They are very limited in terms of their experiences with technology... I feel like for now it doesn't feel particularly relevant."

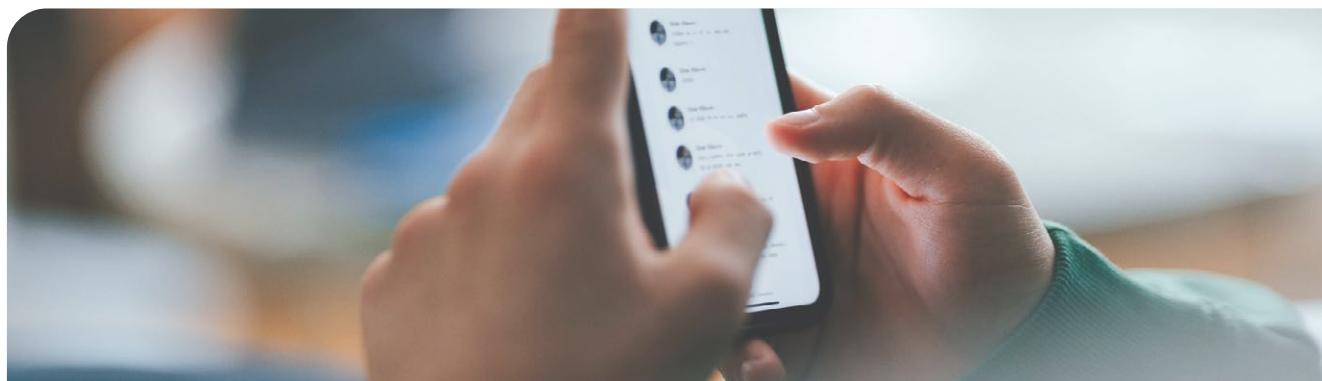
—LEILA, FOCUS GROUP 6

Topics Caregivers Discussed with Youth

We asked participants, “Has anyone here talked with their kids about generative AI?” Participants who had engaged in such conversations shared their reflections on the topics they had naturally discussed with their children, including ethical implications, practical uses, and potential risks. While we asked follow-up questions to gain deeper insights into these discussions, the topics themselves arose organically from the caregivers’ conversations with their children. Below is a summary of the primary topics that emerged:

► Responsible Use

Participants reported that their AI-related conversations with youth most often focused on how youth should and should not use AI—a theme we refer to as the “responsible use of AI tools.” Caregivers emphasized the importance of avoiding generative AI for cheating, such as completing school assignments or generating answers without understanding the source material. Some caregivers went further by providing explicit guidelines, advising their children to use AI only for brainstorming ideas, creating topic outlines, or conducting preliminary research. They also stressed the need for safety in AI interactions by encouraging their children to avoid sharing identifying information.


Throughout our discussions, some participants re-evaluated their views on responsible use as ethical concerns surfaced. One caregiver, who initially opposed AI use in academic settings due to fears of cheating, began to see its potential as a valuable educational tool when used responsibly. They recognized that AI could help their child brainstorm ideas or develop research topics, provided there were clear guidelines in place. This reflection prompted them to think about how to effectively guide their child in leveraging AI—fostering critical thinking about the information generated while ensuring that the focus remained on understanding the material. This iterative process demonstrated caregivers’ willingness to adjust their perspectives on AI as they engaged in deeper discussions about its implications and the ethical responsibilities involved.

“Teaching my kids, yes, you can use it to learn. You can use it to help guide you with what you’re trying to do, at least for homework or essays. But it shouldn’t be used in a way where it does all your work for you.”

—BASUKI, FOCUS GROUP 12

“I think there’s a balance, because I’m not against it, and I’m not a hundred percent [for it]. I’m just trying to find out what they know, or what makes them think it’s better. I don’t want to keep it old school and say that things can’t change, or this is my opinion, and this is the best. Our conversations are usually like, ‘Well, why do you think it’s better?’”

—JORDYN, FOCUS GROUP 8

► Critical Evaluation of AI-Generated Information

Participants also talked to their children about evaluating AI-generated information critically. They explained that not all AI outputs are accurate or trustworthy, and youth need to learn how to discern reliable information from potential misinformation. For example, some participants taught their children to cross-check AI-generated answers against trusted sources like textbooks, reputable websites, or expert opinions. Participants also emphasized the importance of teaching youth to understand the limitations of AI. Some participants highlighted the potential for bias in AI output, such as algorithmic bias, which can occur when AI models are trained on data that reflect existing societal prejudices.

"It's something I'm definitely going to have to have a discussion with my girls, but more about concern about the bias of the data that they might be receiving. [It's important] always to be critical of the information."

—JOEL, FOCUS GROUP 10

► Practical Uses of AI

Some participants introduced their children to practical uses of AI to make the technology more approachable and to foster discussions on using these tools effectively and safely. For instance, caregivers shared examples like using AI for creative activities such as generating story ideas, designing posters, or creating artwork, as well as solving practical problems like finding recipes or learning new skills. They mentioned tools like DALL-E, ChatGPT, and Meta AI as resources they explored with their children to demonstrate these practical applications.

"We had a particularly funny little experience where we were getting ChatGPT to make text images, and they wanted it to make all sorts of goofy images, and I would type it in and then it would make the image, and then they would laugh."

—JOHNNY, FOCUS GROUP 12

HOW CAREGIVERS LEARNED ABOUT GENERATIVE AI

Participants' use of resources to learn about generative AI varied widely. While some did not know of any, others relied on a variety of information sources. Below, we describe some key methods caregivers used to learn about generative AI.

► Online Searches and Articles

Search engines (e.g., Google, Bing) provide substantial information about AI for those seeking it out. Participants described reading news articles, opinion pieces, and other online content to stay informed about AI technologies, their uses, and potential risks. This method allowed for quick access to information from various perspectives.

► Trusted Media Sources

Established media outlets—such as newspapers, radio stations, and reputable online news sources—provided accurate and vetted information about AI. Caregivers trusted these sources because they provided well-researched and balanced perspectives on AI's latest developments.

► School and Educational Institutions

Caregivers trusted educational institutions as reliable sources of information about AI, alongside other important topics, through their direct communication with teachers and access to school resources.

► Forums and Community Discussions

A few participants engaged in forums and community discussions, including caregiver-child forums organized by school districts, to learn and discuss AI-related topics. These discussions provide a platform for sharing experiences, asking questions, and gaining insights from other caregivers and educators.

► Colleagues and Professional Networks

For those who work in academic or professional settings, discussing AI with colleagues and using organized groups within their institutions can provide additional insights. These professional networks provide a space for discussing AI's practical and ethical implications in both personal and professional contexts.

Caregivers had a wide variety of knowledge about and experiences with AI, with most being familiar with AI tools like ChatGPT and voice assistants (e.g., Alexa, Siri), but many still feeling like they lacked a deeper understanding of the tools and how to use them. Many participants strongly wished for more resources to help them understand AI and guide their children, including conversation prompts, legal information, and practical guidelines for safe and effective AI use.

CAREGIVER PROFILES: NAVIGATING AI IN DISTINCT WAYS

In the previous sections, we provided an overview of caregivers' perceptions and use of generative AI. During our analysis, distinct patterns emerged in how caregivers approach AI within their family dynamics. To capture this variation, we developed four caregiver profiles: **The Curious Newcomer**, **The Discerning Optimist**, **The Concerned Critic**, and **The Tech-Savvy Enthusiast**. These profiles reflect common patterns in caregiver-child communication, ethical considerations, and expectations for AI's role in family life.

It is important to note that these profiles are not intended to convey stable personality traits or innate characteristics; caregivers' approaches to AI are likely malleable and dynamic, shaped by their environments and responsive to changing needs within their families and communities. Some participants' opinions on responsible uses of AI even shifted over the course of the conversation, underscoring how caregivers' perceptions of AI are rapidly evolving.

These profiles illustrate the diverse perspectives caregivers bring to discussions about AI and serve as a tool for caregivers to better understand their own approaches. This framework helps caregivers assess their current understanding and approach to AI, while also offering insights to guide effective conversations about AI with their children. Tailored recommendations based on these profiles are provided later in the white paper to support caregivers' needs.

The Curious Newcomer

- ▶ Limited experience with AI and is still figuring out how it fits into family routines
- ▶ Strong desire to learn about AI but is still in the early stages of understanding
- ▶ Tends to focus on concerns of AI that were more surface-level
- ▶ Eager to explore new tools and technologies that could benefit youth and families
- ▶ Careful not to rush into adopting AI without fully understanding it
- ▶ Wants to ensure AI is introduced in a way that supports the overall development of youth

Caregivers in Group 1 ($N = 6$), the Curious Newcomers, were still in the early stages of exploring AI's potential. With little prior knowledge, these caregivers were driven by a genuine curiosity to understand how AI could enhance their daily routines and support their children's education. However, their enthusiasm was tempered by the recognition that they still had much to learn.

Although Curious Newcomers may have experimented with tools like ChatGPT, their use of AI was limited to relatively simple and exploratory tasks. For example, some considered using AI to plan family trips or manage household schedules, viewing these tools as potential time-savers that could alleviate the burden of day-to-day responsibilities. However, they were also conscious of being in the early stages of learning and were focused on building their understanding to make informed decisions about AI.

CHARACTERISTICS*

EXPERIENCE WITH AI

UNDERSTANDING OF AI

LEVEL OF CONCERN

LEVEL OF CURIOSITY

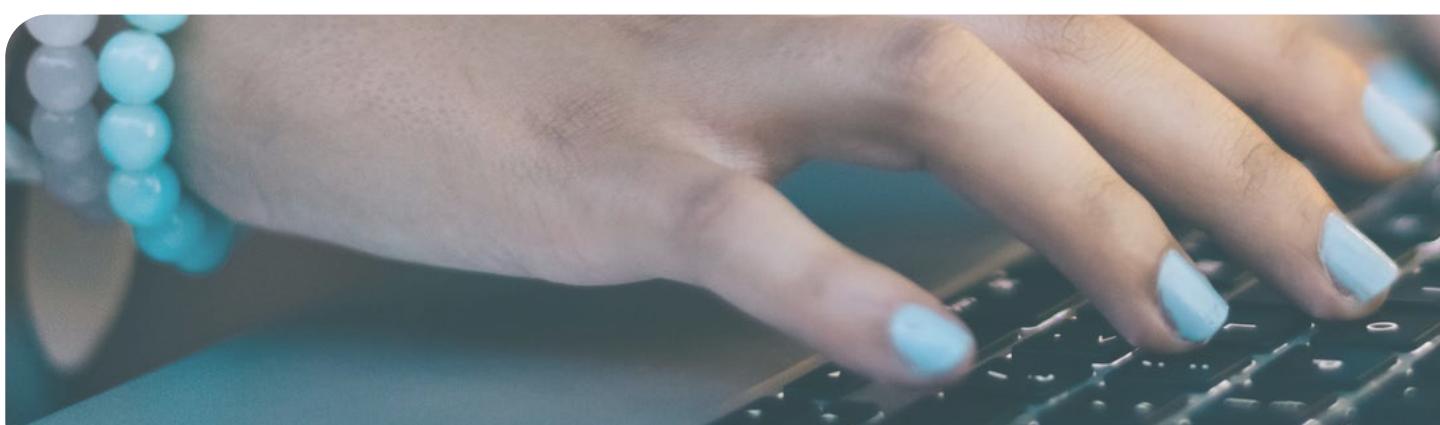
EAGERNESS TO ADOPT USE

* These charts are illustrative composites based on qualitative characteristics, not quantitative data. Placements approximate themes from the research and are not precise measurements.

“Something I think I’m going to try to do is use ChatGPT to plan our next family trip. Because it’s always challenging trying to find stuff, and it’s a lot of work, and I’m like, ‘You know what? I should probably try to use AI and see what it comes up with.’”

—PAYTON, FOCUS GROUP 8

The lack of in-depth knowledge of this group appeared to influence how they engaged in broader discussions about AI, particularly regarding morals and ethics. As a result, when engaging in conversations about these topics, they tended to focus on surface-level concerns like plagiarism or cheating in school. These conversations reflected a basic understanding of AI’s ethical implications and were often limited by their current knowledge. For these caregivers, the immediate focus was ensuring AI was used in straightforward and beneficial ways without delving into complex ethical debates they felt unprepared to navigate. They saw the need to learn more about AI to guide their children effectively in its responsible use.


Curious Newcomers were open to AI’s potential to improve their lives in the future. They were particularly interested in how AI could streamline tasks, increase efficiency, complement their parenting, and support their children’s learning. While eager to explore these possibilities, they recognized the need to deepen their understanding of AI before fully embracing it. Their hesitancy stemmed from a desire to integrate AI in ways aligned with their values and that benefit their children. Despite their reservations, Curious Newcomers remained open-minded about AI’s potential to enhance their everyday lives and confident that, with time, they would become more comfortable using these new technologies.

“We talk about how unbelievably convenient it can be, but at the same time super scary... We talk about things like that, pros and cons, very lightly though because I think it’s still new to us, me, to my family.”

—MICHELE, FOCUS GROUP 4

“Whenever you put something new in place, it’s always overwhelming, and then you get to learn it, and then we become pros at it by the time it gets a couple of years in. I think that eventually I’ll become more comfortable with it.”

—JORDYN, FOCUS GROUP 8

The Discerning Optimist

- ▶ Some experience with AI tools and understanding their potential
- ▶ Seeks a middle ground between embracing technology and maintaining human-centered parenting
- ▶ Views AI as a tool that can be beneficial if used responsibly while still acknowledging its potential harms
- ▶ Strongly considers the ethical implications of AI usage, especially in educational contexts
- ▶ Prioritizes youth well-being and development, ensuring that AI does not negatively impact these areas

Caregivers in Group 2 ($N = 11$), known as Discerning Optimists, demonstrated a balanced approach to AI. Unlike the Curious Newcomers who were just beginning their journey with AI and whose concerns were more surface-level, Discerning Optimists had some experience with AI and a deeper understanding of its capabilities. They saw AI as a valuable tool that could enhance their lives and support their children's education when used responsibly. However, they were also mindful of the complexities and ethical considerations involved in its use.

Discerning Optimists took a pragmatic approach to AI by recognizing its potential to improve efficiency and enhance learning opportunities for their children. They saw value in using tools like ChatGPT for brainstorming or generating creative ideas. For example, they might encourage their children to use AI to research complex historical topics, supplementing classroom learning with tailored educational support. However, these caregivers were also aware of AI's limitations, such as its potential for bias, deepfakes, and misinformation. Their familiarity with AI allowed them to use it effectively while remaining discerning about its output.

CHARACTERISTICS

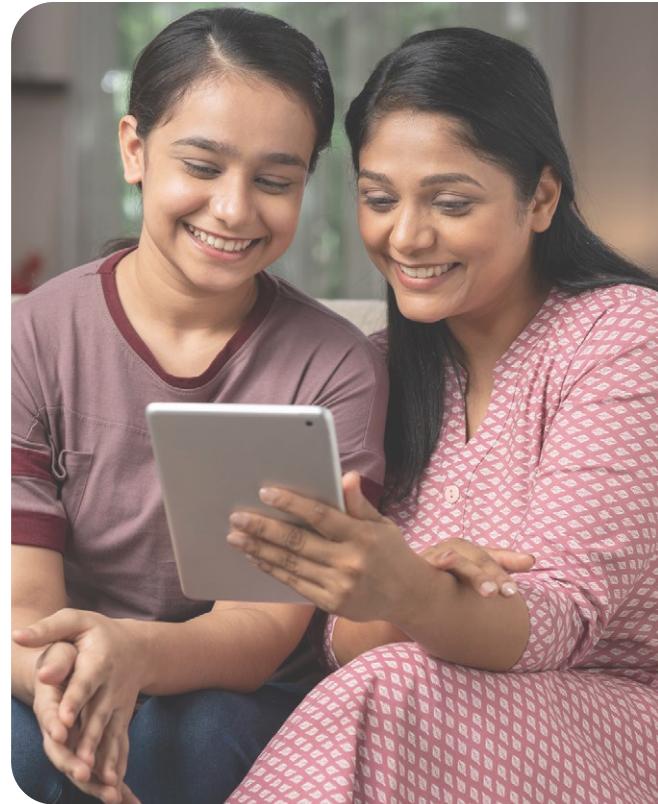
EXPERIENCE WITH AI

UNDERSTANDING OF AI

LEVEL OF CONCERN

LEVEL OF CURIOSITY

EAGERNESS TO ADOPT USE



"To stay ahead of the curve and to be able to participate more actively in the class, we asked [our children] to get themselves educated about slavery, civil war, how the movement started and how the railroads were built and those kinds of things [using AI]."

—SAMARTH, FOCUS GROUP 4

Discerning Optimists were particularly focused on the responsible use of AI within their families. They discussed the ethical implications of AI with their children, including privacy concerns, the potential for misinformation, and the risk of over-reliance on technology. Unlike the Curious Newcomers, whose conversations about ethics were often surface-level, Discerning Optimists delved into more complex issues that reflected their nuanced understanding of AI. These caregivers actively guided their children to use AI in ways that complemented critical thinking skills by encouraging skepticism and the development of digital literacy skills. For instance, they sometimes discussed how to critically evaluate AI-generated content and the importance of cross-referencing information with trusted sources. However, unlike the Concerned Critics, they took a more balanced approach to weighing the opportunities and risks of AI.

When considering the future, Discerning Optimists were hopeful about AI's potential. They envisioned AI as a powerful educational tool, seeing the promise of AI tutors that could personalize learning experiences and support students in mastering complex subjects like advanced mathematics or foreign languages. They also recognized AI's potential in healthcare, such as improvements in diagnostics, personalized treatments, and streamlined healthcare management. However, their optimism was tempered by a cautious approach. They emphasized the need for thoughtful integration of AI into daily life by advocating for a balance between adopting these tools and developing essential human skills.

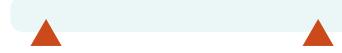
"I want to try to help [my children] develop the literacy to understand that there's a lot of things that are possible now that they should be skeptical about and try to learn how to get good information and be good consumers of what's coming at them."

—TIMOTHY, FOCUS GROUP 6

"AI is here to stay, and we see it everywhere. Time and the years go by, we'll see it more predominant in many settings."

—ELISE, FOCUS GROUP 8

The Concerned Critic


- ▶ Mixed levels of experience with AI
- ▶ Doubtful of AI's benefits and worried about its impacts on education and parenting
- ▶ Concerned about AI's potential to replace human skills and face-to-face interactions
- ▶ Recognizes the potential costs and harms of AI, now and in the future
- ▶ Prefers to avoid AI due to fears of misuse and ethical concerns
- ▶ Wary of introducing AI into the lives of youth

Caregivers in Group 3 ($N = 9$), who we termed Concerned Critics, expressed a deep skepticism and caution toward AI. For some, a lack of information about AI led to elevated fears about its potential impact. For example, one participant said that what came to mind when they thought about AI was “The bad robot movies, they’re going to take over the world. I don’t like it” (Latifa, Focus Group 2). For others, deep knowledge about AI and its downsides contributed to negative overall impressions. Across their different levels of experience, Concerned Critics were united in their worries that AI might disrupt fundamental aspects of child-rearing and education, such as face-to-face interactions, hands-on learning, and the development of social skills.

Concerned Critics often viewed AI as an unnecessary complication, fearing that it could distract from more meaningful learning experiences and diminish the value of face-to-face interactions. Their primary concern was that AI might interfere with developing social and emotional skills nurtured through human connections. For these caregivers, the erosion of these interactions directly threatened their children’s well-being and the quality of their formative experiences.

CHARACTERISTICS

EXPERIENCE WITH AI

UNDERSTANDING OF AI

LEVEL OF CONCERN

LEVEL OF CURIOSITY

EAGERNESS TO ADOPT USE

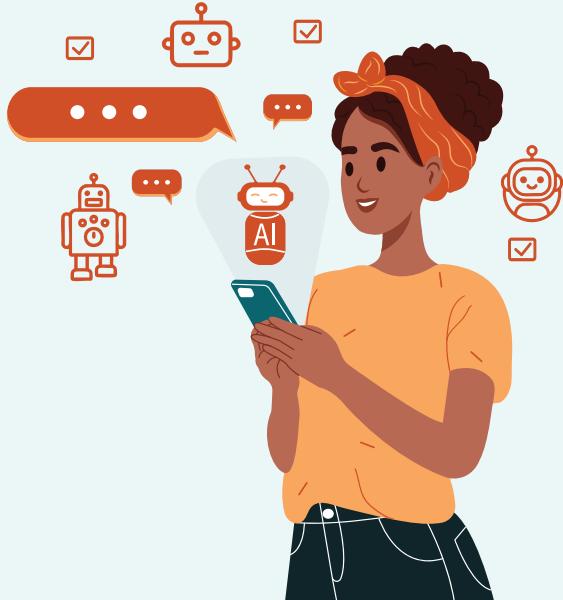
"I think when it comes to technology, things have evolved so much. I worry that we will lose the human aspect of the interactions that we have with just having regular conversations with people."

—EVANGELINE, FOCUS GROUP 5

Concerned Critics also harbored deep concerns about AI's broader impact on society, particularly its potential to replace jobs that require human empathy, such as teaching and customer service. They feared AI could lead to a depersonalized world and the creation of a future in which their children might struggle to engage in meaningful interactions and navigate complex social environments. The potential for AI to reduce opportunities for genuine human interaction in education and public services was seen as a significant risk, leading these caregivers to question the long-term benefits of AI.

Building on these broader societal concerns, Concerned Critics expressed worries about privacy, data security, and the ethical use of AI, particularly in terms of surveillance. Their distrust sometimes extended to AI-powered devices, as there was unease about the possibility of devices like Alexa listening in on household conversations. Such concerns reinforced their cautious stance on introducing AI into their family routines.

Despite their reservations, Concerned Critics were not entirely opposed to technology. Instead, they advocated for a cautious and selective approach to AI integration that balanced technological advancements and focused on preserving traditional learning methods. They believed that while AI might have some benefits, these should not come at the expense of critical thinking and offline experiences. Their priority was ensuring that their children would retain crucial life skills and maintain strong human connections even as AI technologies continue to advance.


"I still want my kids to learn the traditional way with school, with me teaching them school. Hopefully the AI don't sit there and take over teachers teaching the kids and things like that."

—BRITTANY, FOCUS GROUP 9

"I feel like [AI] is just going to replace us eventually. What are we here for? You guys already took out most of the cashiers at the stores. There's going to be no human interaction."

—LATIFA, FOCUS GROUP 2

The Tech-Savvy Enthusiast

- ▶ Advanced experience with digital technologies and AI
- ▶ Eager to adopt new technologies and integrate them into daily life
- ▶ Sees AI as a positive force that can enhance productivity, creativity, and problem-solving
- ▶ Comfortable experimenting with new AI tools and teaching others how to use them
- ▶ Actively engages with youth about AI, focusing on how it can benefit their education and future

Caregivers in our final group ($N = 6$), the Tech-Savvy Enthusiasts, were knowledgeable about AI and eager to integrate it into their children's lives. They were typically already skilled and comfortable with other forms of technology, so they embraced AI tools as a natural extension of their digital lifestyles. Caregivers in this group were confident about integrating AI into their families' routines and believed these tools could offer significant benefits when used thoughtfully.

Tech-Savvy Enthusiasts felt positively about AI's future and its growing role in education, work, and everyday life. They often discussed technology use with their children by focusing on digital tools like AI applications and social media. They viewed these conversations as opportunities to explore the potential benefits of digital technologies, such as enhancing creativity, improving research skills, and increasing efficiency in schoolwork. They encouraged their children to experiment with AI tools and often modeled exploration themselves.

CHARACTERISTICS

EXPERIENCE WITH AI

UNDERSTANDING OF AI

LEVEL OF CONCERN

LEVEL OF CURIOSITY

EAGERNESS TO ADOPT USE

"I would say my daughter, she's barely into knitting, and so all this stuff is, or how-tos, are at the tip of her fingers. She can be like, 'Oh, I want to knit this new thing,' or whatever. And she doesn't have to go find a book, or find a person to teach her how to do it. She can just type it in and it's right there at her fingertips."

—KRISTY, FOCUS GROUP 8

Tech-Savvy Enthusiasts approached the ethical implications of AI with a balanced perspective. They acknowledged the potential for harm but believed the benefits outweighed the risks. They saw ethical AI use as an ongoing conversation within their families requiring thoughtful consideration, but one that should not slow technological advancement. Confident that risks could be mitigated through guidance and education, they focused on teaching their children responsible AI use and encouraging them to consider the moral implications of their interactions with technology. They believed societal and legal frameworks would evolve to address these challenges, and their primary concern was ensuring their children were well-prepared to navigate the complexities of AI.

While Tech-Savvy Enthusiasts acknowledged the potential harms of AI, they considered these risks manageable. They were more concerned that their children might fall behind if they lacked experience in using AI tools. For example, they worried that in a future where AI is central to professional success, those who were not exposed to AI as children might be unable to compete with skilled users. Caregivers in this group saw AI as essential to the future, and they were committed to helping youth navigate this rapidly changing landscape with confidence.

"I do think AI has dangers for sure, but I don't think the dangers are going to take us down, and I think we can fight against them the same way we have laws against other things."

—JOHNNY, FOCUS GROUP 12

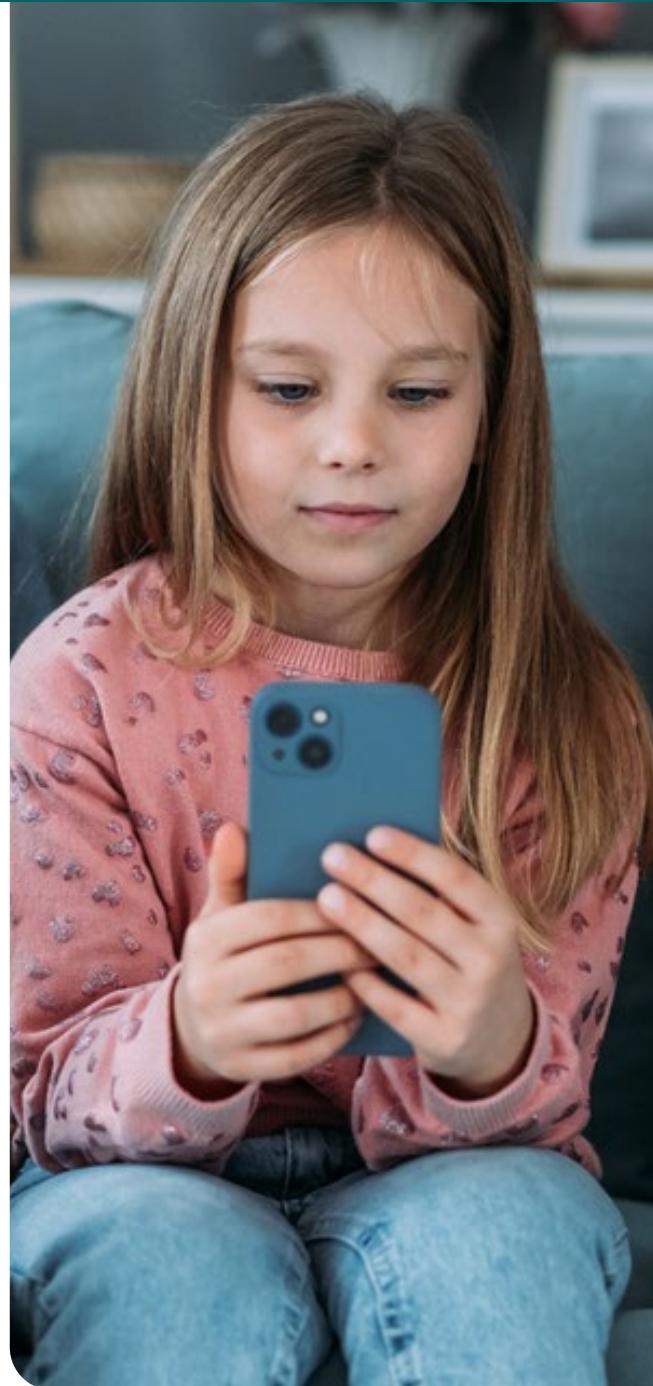
"If their best method of learning doesn't involve AI, they will be behind in a little bit because I just foresee in the future, AI is going to be used, it's going to be incorporated and it's going to help things move faster. And those who don't will fall behind."

—JOEL, FOCUS GROUP 11

TABLE 1 Participant Profiles: AI Familiarity, Usage Patterns, and Perspectives

Participant Name (pseudonym)	Persona	Tool Familiarity	Frequency of Use	Perspective Summary	Understanding
Latifa	Concerned Critic	Meta AI Siri	They have limited awareness of AI tools and primarily use voice assistants and AI built into social media search features.	They expressed a generally negative outlook on the potential impacts of AI on society with their primary concerns focusing on consequences of AI on job opportunities and human interaction.	AI as a Service Tool
Teresa	Concerned Critic	Alexa	They are aware of a few AI tools but don't have much experience using them other than voice assistants for basic tasks.	They expressed some hopes for how AI could eventually support their daily workload and tasks, but also expressed major concerns for the impact AI tools could have on children.	AI as a Service Tool
Brittany	Concerned Critic	Alexa Google Gemini Meta AI Snapchat AI	They try not to use AI too often, and most of their experiences are with AI chatbots embedded into social media and search engine tools.	They expressed concerns regarding surveillance and privacy when using AI tools.	AI as a Service Tool
David	Discerning Optimist	ChatGPT Customer service chatbots Siri	They have used ChatGPT, voice assistants, and observed others using AI tools at work.	They see potential benefits of AI but expressed concerns such as over-reliance on AI tools and ethical uses of AI, specifically around misinformation generation and detection.	AI as a Task Assistant
Andre	Discerning Optimist	ChatGPT	They have experimented with AI tools for both practical and creative purposes in their daily life.	They expressed concerns about the potential for misuse of AI tools and the lack of awareness of the limitations around AI tools. However, they have been optimistically experimenting with the AI tools for creative and personal projects.	Systems-Level Definition
Jimena	Discerning Optimist	Alexa	They primarily use voice assistants in their daily life.	They expressed concerns about the potential for AI to hinder the development of essential skills for children and adults. However, their use of AI voice assistant tools makes them consider ways AI could help humans execute tasks.	Comparison to Other Tools
Michele	Curious Newcomer	ChatGPT Google Gemini Meta AI	They are aware of a few AI tools but don't have much experience using them.	They expressed an interest in learning more about various AI tools and how to use them. However, until they learn more about how these tools work, they remain cautious about introducing AI to their children.	Comparison to Other Tools
Audrey	Curious Newcomer	ChatGPT	They expressed that they have limited experience using AI tools and are still learning about them.	They expressed concerns around how their children will use AI in the future and how their lack of experience with AI tools may mean they are not able to support their children's responsible use of AI tools.	AI as a Task Assistant
Basuki	Curious Newcomer	ChatGPT Bing	They have limited experience with AI but they have experimented with using the tool for creative purposes and for fun. They have also used websites to verify whether media is AI-generated or not.	They expressed a need for their children to learn about responsible use of AI tools as they see AI becoming more prolific in the future and embedded into everyday life.	AI as a Creative Companion
Joel	Tech-Savvy Enthusiast	ChatGPT Quora integration	They have experience using AI tools daily for work and personal tasks; they understand some of the technical elements of how AI tools work.	They recognize the risks that AI tools pose and would like their children to be critical but active users of the technology.	Systems-Level Definition
Craig	Tech-Savvy Enthusiast	ChatGPT Google Gemini Microsoft Copilot	They have experience using some AI tools for work and personal tasks.	They expressed concerns regarding surveillance and privacy when using AI tools.	AI as a Task Assistant
Alec	Tech-Savvy Enthusiast	Alexa Bing ChatGPT	They use ChatGPT for work tasks and other tools like search engine and voice assistant AI for personal tasks.	They recognize the risks that AI tools pose and would like their children to be critical but active users of the technology.	AI as a Task Assistant Comparison to Other Tools

This table offers an overview of how 12 participants from four different persona groups reported their familiarity with AI tools, the frequency with which they use these tools, and their understanding of how AI tools function.


Recommendations

Guiding Principles for Family Conversations about AI

Caregivers face many challenges as they raise youth in a rapidly evolving world. One primary concern for caregivers is deciding when and how to introduce digital technologies into their children's lives.

Although caregivers may feel pressure to create rules and enforce boundaries on technology use, it can be challenging to know where to start with the wide variety of information that caregivers receive.

Below, we provide research-backed recommendations and resources that can guide caregivers in having family conversations that help youth learn to use AI tools safely and effectively. We developed many of these suggestions based on best practices participants used to communicate with their children about AI. We recognize that caregivers are often busy, and the thought of implementing multiple recommendations at once can feel overwhelming. Therefore, we offer a range of suggestions tailored to caregivers with varying experience levels and attitudes toward AI. We recommend starting with one or two suggestions that resonate most with you and gradually building from there. The "[Where to Start?](#)" box (page 42) provides guidance on which practices may be best suited for each caregiver profile.

Explore and Co-Create

Caregivers can help youth develop proficiency and confidence with AI tools while minimizing potential risks by exploring and co-creating with them. Joint media engagement (see [Beneteau et al., 2020](#); [Dore & Zimmermann, 2020](#); [Takeuchi & Stevens, 2011](#); [Zhang et al., 2022](#)) is a strategy where caregivers and youth explore and interact with media together. Doing so can increase youth interest and attention to the media source, catalyze their learning, and improve relationships between youth and caregivers ([Barron & Levinson, 2019](#); [Ewin et al., 2021](#); [Llorente et al., 2019](#)). Though research suggests that co-exploration can facilitate learning, only a few caregivers in our study had used AI tools with their children. We encourage more caregivers to try implementing this practice with their children, as even a short time spent co-creating may impact youth engagement with and knowledge of AI tools. Below are some actions caregivers can take to make the most of exploring AI tools with youth.

► Strengthen and Expand Your Knowledge about AI

Strengthening and expanding your knowledge about generative AI supports youth in using it effectively. A recent poll from Common Sense Media suggests there may be a knowledge gap between parents and teens regarding AI ([Common Sense Media, 2023](#)). The first step to teaching youth about using AI tools and engaging in family conversations with them is to educate yourself, particularly for caregivers who identify as Curious Newcomers and may be less familiar with AI tools. Below is a list of resources for caregivers that can be used as a starting point for learning about generative AI:

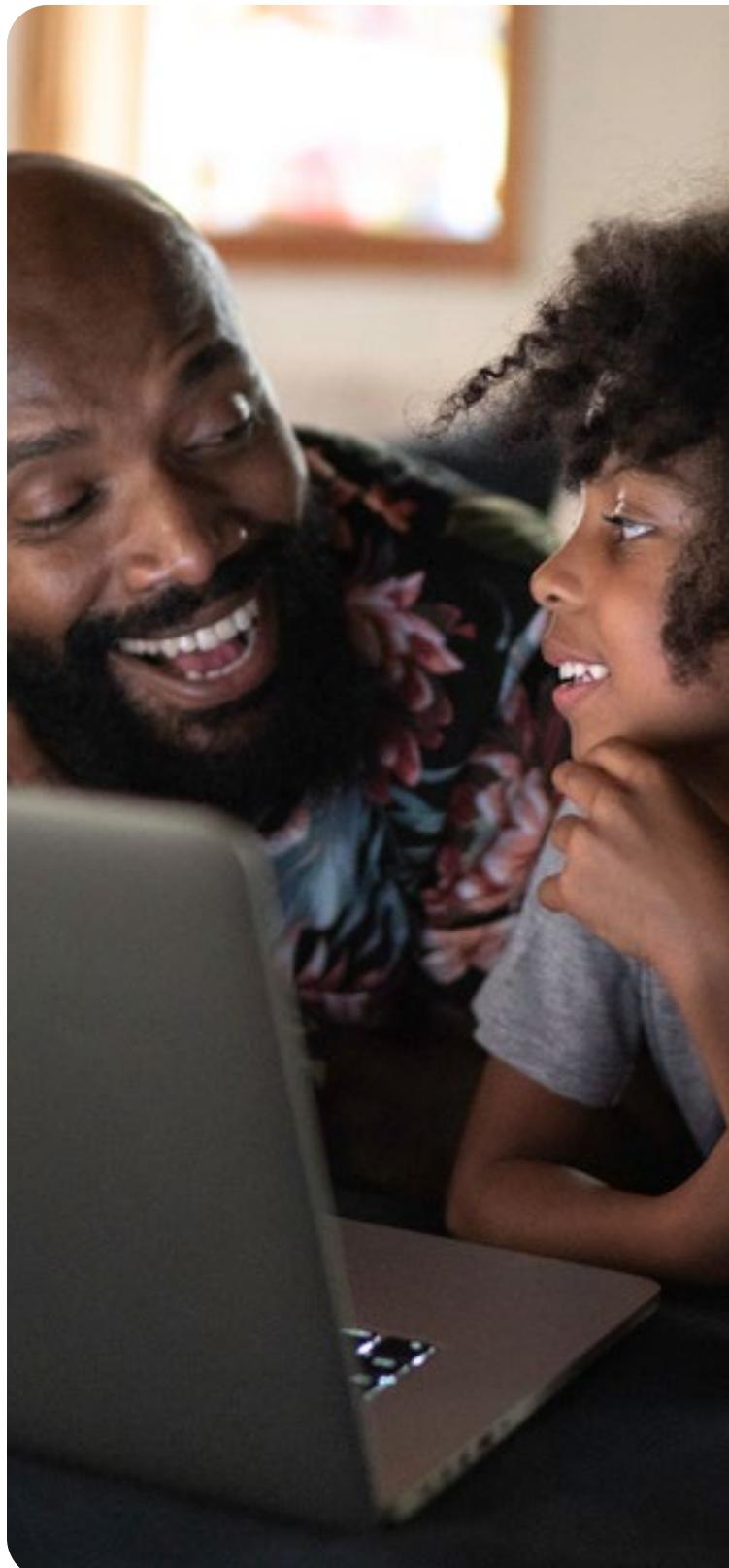
- [Youth and Generative AI: A Guide for Parents and Educators \(Children and Screens\)](#)
- [Understanding Generative AI: A Guide for Parents \(NAMLE and Roblox\)](#)
- [AI and Children: AI Guide for Parents \(UNICEF Office of Global Insight and Policy\)](#)
- [AI Risk Assessments \(Common Sense Media\)](#)
- [Parents' Ultimate Guide to Generative AI \(Common Sense Media\) \[paid resource\]](#)

► Introduce AI at Developmentally Appropriate Times

AI should be integrated in developmentally appropriate ways for youth, but the appropriate age and manner of introducing AI will likely vary depending on the child and family context. For young children, it may be more suitable to start conversations about responsible technology use rather than introducing popular AI tools like ChatGPT ([Prothero, 2024](#); [Xu & Warschauer, 2020](#)). Understanding a child's developmental stage is crucial, as early exposure to complex technologies can be mismatched with their cognitive abilities ([Munzer, 2024](#)). Instead, caregivers can focus on fostering foundational digital literacy skills, such as [recognizing the difference between real and fictional content](#) or [understanding basic online safety](#).

For caregivers interested in introducing generative AI to their children, like our Tech-Savvy Enthusiasts, selecting AI tools designed explicitly with developmental appropriateness in mind is essential. Common Sense Media has [AI Risk Assessments](#) that evaluate popular AI tools to help caregivers make informed choices for their children. Some AI tools are explicitly created for younger audiences and may be introduced earlier in development. For example, [Ello](#) is an AI tutor supporting reading skills in Kindergarten through 3rd grade. Additionally, courses such as CodaKid's [Intro to AI](#) introduce basic AI principles to children as young as eight, covering topics like prompt engineering and creative AI play.

As children reach early adolescence, caregivers may consider joint engagement with AI tools to help youth build confidence with technology while scaffolding important lessons about appropriate use. Most caregivers in our study believed 10-12 years was the right time to start discussing AI tools with their children. Youth ages 13 years and older are typically considered developmentally ready to begin navigating complex digital tools, as they are better equipped to understand these concepts or go to a trusted adult if the content they find online seems inappropriate ([O'Keeffe, 2016](#)). However, caregivers who are less familiar or comfortable with AI tools or have concerns about potential risks may delay introducing their children to AI until they feel more prepared.


► Explore Together

Playing with AI tools collaboratively within families can help youth build skills, facilitate essential conversations about AI use, and promote engagement ([Drugu et al., 2022](#)).

Some participants, especially our Tech-Savvy Enthusiasts, described joint AI engagement such as generating funny images with their children or exploring child-friendly explanations of complex topics. Others preferred to take an observational role by watching their children interact with AI and using these experiences to discuss responsible AI use. These findings support past research that caregivers engage in multiple forms of participation when interacting with AI tools alongside youth, such as observing, teaching, learning, and collaborating ([Drugu et al., 2022](#)).

Informed parents and other caregivers who are involved in their children's AI use can support youth in learning to use AI safely and appropriately. When it comes to youth media use, the style of caregiving matters ([Padilla-Walker et al., 2020](#)). This is especially true for older youth, as adolescents have a greater need for autonomy. Research on the effectiveness of caregivers restricting young people's access to other forms of media is mixed and does not point to clear benefits for youth ([Beyens et al., 2022](#); [Elsaesser et al., 2017](#); [Koning et al., 2018](#); [Nielsen et al., 2019](#)).

However, an autonomy-supportive style—an approach that provides a developmentally appropriate rationale for their media rules and takes adolescents' perspectives seriously—can have more benefits for youth well-being ([Padilla-Walker et al., 2020](#)). Caregivers can maintain appropriate oversight by exploring and playing with AI tools while maximizing child autonomy and creativity.

► Teach Verification and Critical Thinking

Participants expressed concern about their children encountering misinformation, noting that generative AI tools can produce false information ([Weise & Metz, 2023](#)). This worry is heightened by the growing volume of AI-generated content online ([Yang, 2024](#)). As youth increasingly interact with content created by AI-powered platforms, developing fact-checking skills and critical thinking becomes essential.

To address these challenges, caregivers can guide youth in verifying the information provided by generative AI, such as by cross-referencing facts. For example, some participants described teaching youth to engage critically with AI-generated content and fact-check its veracity. It may also be important to teach youth how to identify signs that online content may be AI-generated; [NPR has some simple tips](#) on how to do this.

Additionally, when doing research, caregivers can encourage youth to use AI as a supplementary tool rather than a primary source and evaluate the credibility of their sources. A recent study from Common Sense Media found that, among those who have used generative AI for assignments, 43% of teens did not verify the accuracy of AI-generated information with other sources ([Madden et al., 2024](#)). Teaching youth to use critical thinking skills to evaluate AI-generated content could help those less comfortable with AI, like our Concerned Critics, address the potential risks of AI misinformation. This approach also supports youth in developing the competence needed to navigate technology effectively.

► Prepare for the Future

AI could change the future of work dramatically ([Ellingrud et al., 2023](#); [Woodruff et al., 2024](#)). Indeed, many participants believed that AI would reshape the way their children live, learn, and work in the future. Caregivers can prepare youth to navigate a world in which AI is prevalent by helping them understand AI's evolving role in the workforce and society. Even in the present day, AI has influenced the professional landscape. A 2022 survey by Pew Research found that 19% of American workers were in jobs with high exposure to AI. It also noted that jobs with greater exposure to AI were often in higher-paying fields ([Kochhar, 2023](#)). Similarly, AI and machine learning specialists topped the list of projected fastest-growing jobs in the [World Economic Forum's 2023 report](#). Though Concerned Critics may be hesitant to introduce their children to AI tools, familiarity with how AI works may be an important professional advantage in their children's futures.

Build Strong Ethics

Whether they had initiated these conversations or not, all caregivers in our focus groups described the need to help youth understand and develop ethical and moral reasoning around AI. Engaging in ongoing open communication with youth about the ethical implications of AI use is one of the most powerful ways caregivers can promote their children's development of ethics and decision-making skills. Below, we highlight some key considerations for caregivers when initiating these conversations.

► Ensure Originality and Honesty

Encourage youth to always acknowledge AI's contribution to their work. When creating work, youth should differentiate between what they created and what is AI-generated. Previous research has found that teachers believe proper citation is essential for the ethical use of AI, as it can help students maintain academic integrity and avoid plagiarism ([Rubin et al., 2023](#)). Caregivers who encourage AI exploration but are concerned about ethical use, like our Discerning Optimists, can guide their children to maintain originality and honesty by advising them to cite AI in their work. Preliminary guidelines for how to cite AI-generated content are now available for some of the most commonly used citation styles, including [MLA](#), [APA](#), and [Chicago](#). However, questions of whether, when, and how AI-generated or AI-assisted content should be cited are still subjects of ongoing debate. Caregivers can initiate open conversations with youth about these ambiguities and rapidly-evolving academic policies in response to AI.

► Incorporate Ethical AI Use in Daily Life

Caregivers hold a unique responsibility to teach youth about ethical behavior. Like with any tool or new technology, they should encourage ethical use of AI ([Morgan & Fowers, 2022](#)). Caregivers can include ethical AI in everyday family discussions and decision-making processes to normalize responsible behavior around technology. For example, caregivers can incorporate AI into recurring conversations about screen time, social media, and other technology with their children. Caregivers can also integrate AI into their [digital media plan](#) or [family tech planner](#), which can be helpful in initiating family discussions around technology use.

Recent research has found that teens who have had classroom discussions about AI tend to have more nuanced views about its potential benefits, pitfalls, and role in shaping the future ([Madden et al., 2024](#)). Family discussions about AI may similarly help youth foster a more comprehensive understanding of AI and its impacts. Normalizing AI ethics through repeated discussion is likely more effective than setting rules or instructing youth not to use AI.

To facilitate these discussions, caregivers might consider using prompts like:

- “What do you think are some responsible ways to use AI tools?”
- “How can we ensure that using AI doesn’t hurt others?”
- “Can you think of a time when you might want to use AI? What would be the right way to do it?”
- “What are some potential benefits of using AI, and what are some risks we should be aware of?”
- “How can we use AI to help others or improve our community?”

To help model appropriate use, caregivers could verbalize their own ethical decision-making process when discussing or playing with AI tools. For example, saying things like: “If I had it write the whole thing for me, I wouldn’t learn how to do it myself! Maybe I could have it give me some ideas for where to start.” Caregivers can also encourage youth to use AI in ways that are beneficial not just for themselves but also for society at large. For instance, caregivers may stress the importance of not using AI to deceive or harm others, such as by generating false information or using AI-generated content to cheat. Our Curious Newcomers and Discerning Optimists may be particularly well-suited to set a positive example by sharing their own AI learning experiences with youth.

AI in Moderation

AI can be a positive tool for learning and creativity. However, caregivers should embrace a balanced approach to integrating technology into their family lives, ensuring that youth have opportunities to learn and develop skills independently of AI.

► Set Clear Boundaries for AI Use in Schoolwork

Youth understand that generative AI can be both beneficial and detrimental to learning in different contexts and are looking for clear guidelines on AI use in schools ([Lombard et al., 2024](#)). Along with teachers and schools, caregivers can help establish rules about when and how AI can be used for school assignments to ensure it aids learning without replacing skill development. Having these conversations early may be particularly helpful in increasing Concerned Critics' confidence in how youth make decisions around AI at school.

Aim to develop and adjust these rules collaboratively with youth, considering their interests and perspectives. Explain why AI is off-limits for some school tasks and emphasize the importance of their learning. Research suggests that involving youth in the rule-making process, discussing the reasoning behind rules, and applying rules consistently can all increase the likelihood that youth will follow family rules for technology use ([Hiniker et al., 2016](#)).

► Support Skill Development Independently of AI

Balance AI use with activities that foster independent critical thinking, creativity, and problem-solving skills. Participants, especially those identified as Concerned Critics, expressed worries that AI might overshadow opportunities for youth to learn, play, create, and interact without relying on technology. To address these concerns, it's essential to ensure youth have time away from screens to socialize and engage in various activities ([parentintel, 2023](#)). Maintaining a healthy balance allows youth to explore emerging technologies within appropriate limits while participating in other valuable opportunities.

WHERE TO START

Which recommendations make the best starting point may vary based on caregivers' existing attitudes and level of experience with AI. For example:

If you are A CURIOUS NEWCOMER,

you may want to start by experimenting with AI tools for simple tasks.

If you are A DISCERNING OPTIMIST,

you may want to start by incorporating ethical AI use into your daily life.

If you are A CONCERNED CRITIC,

you may want to start by teaching verification and critical thinking.

If you are A TECH-SAVVY ENTHUSIAST,

you may want to start by co-exploring AI with your children.

Conclusion

Our research underscores how diverse caregiver perspectives around integrating generative AI into family life can be. Caregivers are learning to balance the potential benefits of AI tools—such as enhanced learning and efficiency—with concerns about privacy, critical thinking, and youth social development. While enthusiasm for AI's educational possibilities exists, gaps remain between caregivers' understanding of AI use and how youth engage with these technologies. These findings suggest a need for greater resources and guidance to help families foster responsible AI use. Moving forward, caregivers need appropriate tools to support their children's critical engagement with AI. Our recommendations aim to bridge this gap by offering practical strategies that caregivers can implement to promote responsible AI use in their households. Whether caregivers are optimistic or cautious about AI, these strategies can help families make thoughtful decisions that align with their values.

► LOOKING FOR ADDITIONAL RESOURCES?

Check out our [evidence-based resources guide for educators](#).

You can also read more about the [Digital Technologies and Education Lab](#) and [the STAR Lab](#) research.

References

American Academy of Pediatrics. (n.d.). *Family media plan*. HealthyChildren.Org. Retrieved September 5, 2024, from <https://www.healthychildren.org/English/fmp/Pages/MediaPlan.aspx#/>

Barron, B., & Levinson, A. (2019). Digital media as a catalyst for joint attention and learning. In P. Kuhl, S.-S. Lim, S. Guerriero, & D. Van Damme, *Developing minds in the digital age: Towards a science of learning for 21st century education* (pp. 105–114). OECD Publishing. <https://doi.org/10.1787/c8b53b86-en>

Beneteau, E., Boone, A., Wu, Y., Kientz, J. A., Yip, J., & Hiniker, A. (2020). Parenting with Alexa: Exploring the introduction of smart speakers on family dynamics. *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems*, 1–13. <https://doi.org/10.1145/3313831.3376344>

Beyens, I., Keijsers, L., & Coyne, S. M. (2022). Social media, parenting, and well-being. *Current Opinion in Psychology*, 47, 101350. <https://doi.org/10.1016/j.copsyc.2022.101350>

Bin-Nashwan, S. A., Sadallah, M., & Bouteraa, M. (2023). Use of ChatGPT in academia: Academic integrity hangs in the balance. *Technology in Society*, 75, 102370. <https://doi.org/10.1016/j.techsoc.2023.102370>

Bond, S. (2023, June 13). *AI-generated images are everywhere. Here's how to spot them*. NPR. <https://www.npr.org/2023/06/07/1180768459/how-to-identify-ai-generated-deepfake-images>

Boston Children's Digital Wellness Lab. (2022). *Family guide to disinformation and misinformation online*. <https://digitalwellnesslab.org/family-guides/family-guide-to-disinformation-and-misinformation-online/>

CodaKid. (n.d.). *AI courses for kids and teens*. Retrieved September 10, 2024, from <https://codakid.com/directions/artificial-intelligence/>

Common Sense Media. (n.d.). *AI risk assessments*. Retrieved December 10, 2024, from <https://www.commonsemmedia.org/ai-risk-assessments>

Common Sense Media. (n.d.-b). *Family tech planners*. Retrieved September 5, 2024, from <https://www.commonsemmedia.org/family-tech-planners>

Common Sense Media. (2023). *New poll finds parents lag behind kids on AI and want rules and reliable information to help them*. <https://www.commonsemmedia.org/press-releases/new-poll-finds-parents-lag-behind-kids-on-ai>

Dai, Y., Lin, Z., Liu, A., & Wang, W. (2024). An embodied, analogical and disruptive approach of AI pedagogy in upper elementary education: An experimental study. *British Journal of Educational Technology*, 55(1), 417–434. <https://doi.org/10.1111/bjet.13371>

Dore, R. A., & Zimmermann, L. (2020). Coviewing, scaffolding, and children's media comprehension. *The International Encyclopedia of Media Psychology*, 1–8. <https://doi.org/10.1002/9781119011071.iemp0233>

Druga, S., Christoph, F. L., & Ko, A. J. (2022). Family as a third space for AI literacies: How do children and parents learn about AI together? *Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems*, 1–17. <https://doi.org/10.1145/3491102.3502031>

Ellingrud, K., Sanghvi, S., Dandona, G. S., Madgavkar, A., Chui, M., White, O., & Hasebe, P. (2023). *Generative AI and the future of work in America* (pp. 1–76). McKinsey. <https://www.mckinsey.com/mgi/our-research/generative-ai-and-the-future-of-work-in-america/#/>

Elsaesser, C., Russell, B., Ohannessian, C. M., & Patton, D. (2017). Parenting in a digital age: A review of parents' role in preventing adolescent cyberbullying. *Aggression and Violent Behavior*, 35, 62–72. <https://doi.org/10.1016/j.avb.2017.06.004>

Ewin, C. A., Reupert, A. E., McLean, L. A., & Ewin, C. J. (2021). The impact of joint media engagement on parent-child interactions: A systematic review. *Human Behavior and Emerging Technologies*, 3(2), 230–254. <https://doi.org/10.1002/hbe2.203>

Gibbs, J. (2003). *Moral development and reality: Beyond the theories of Kohlberg and Hoffman*. SAGE Publications, Inc. <https://doi.org/10.4135/9781452233604>

Han, A., Zhou, Z., Cai, Z., Han, S., Ko, R., Corrigan, S., & Peppler, K. (2024). Teachers, parents, and students' perspectives on integrating generative AI into elementary literacy education. *CHI '24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems*, 1–17. <https://doi.org/10.1145/3613904.3642438>

Hiniker, A., Schoenebeck, S. Y., & Kientz, J. A. (2016). Not at the dinner table: Parents' and children's perspectives on family technology rules. *Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing*, 1376–1389. <https://doi.org/10.1145/2818048.2819940>

Institute of Digital Media and Child Development. (2024, March). *Youth and generative AI: A guide for parents and educators*. Children and Screens. <https://www.childrenandscreens.org/learn-explore/research/youth-and-generative-ai-a-guide-for-parents-and-educators/>

Klein, A. (2024, February 28). *Does your district ban ChatGPT? Here's what educators told us*. Education Week. <https://www.edweek.org/technology/does-your-district-ban-chatgpt-heres-what-educators-told-us/2024/02>

Knorr, C. (2020, January 29). *How do I teach my kids to protect themselves online?* Common Sense Media. <https://www.commonsensemedia.org/articles/how-do-i-teach-my-kids-to-protect-themselves-online>

Kochhar, R. (2023, July 26). *Which U.S. workers are more exposed to AI on their jobs?* Pew Research Center. <https://www.pewresearch.org/social-trends/2023/07/26/which-u-s-workers-are-more-exposed-to-ai-on-their-jobs/>

Kohlberg, L. (1984). *The psychology of moral development: The nature and validity of moral stages*. Harper & Row. https://books.google.com/books/about/The_Psychology_of_Moral_Development.html?id=LOtGAAAAMAAJ

Koning, I. M., Peeters, M., Finkenauer, C., & van den Eijnden, R. J. J. M. (2018). Bidirectional effects of Internet-specific parenting practices and compulsive social media and Internet game use. *Journal of Behavioral Addictions*, 7(3), 624–632. <https://doi.org/10.1556/2006.7.2018.68>

Llorente, C., Moorthy, S., & Dominguez, X. (2019). Designing joint engagements with media to support young children's science learning. In P. Kuhl, S.-S. Lim, S. Guerriero, & D. Van Damme, *Developing minds in the digital age: Towards a science of learning for 21st century education* (pp. 115–124). OECD Publishing. <https://doi.org/10.1787/ce478e14-en>

Lombard, E. J., Rubin, J., Chen, K., & Divanji, R. (2024). Student perceptions of AI: recommendations for schools and teachers. *foundry10*. <https://www.foundry10.org/stories/student-perceptions-of-ai-recommendations-for-schools-and-teachers>

Long, D., Teachey, A., & Magerko, B. (2022). Family learning talk in AI literacy learning activities. *Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems*, 1–20. <https://doi.org/10.1145/3491102.3502091>

Luo, W., Yang, W., & Berson, I. R. (2024). Digital transformations in early learning: From touch interactions to AI conversations. *Early Education and Development*, 35(1), 3–9. <https://doi.org/10.1080/10409289.2023.2280819>

Madden, M., Calvin, A., Hasse, A., & Lenhart, A. (2024). *The dawn of the AI era: Teens, parents, and the adoption of generative AI at home and school* (pp. 1–56). Common Sense. <https://www.commonsensemedia.org/research/the-dawn-of-the-ai-era-teens-parents-and-the-adoption-of-generative-ai-at-home-and-school>

McAdoo, T. (2023, April 7). *How to cite ChatGPT*. APA Style. <https://apastyle.apa.org/blog/how-to-cite-chatgpt>

MLA Style Center. (2023, March 17). *How do I cite generative AI in MLA style?* Ask the MLA. <https://style.mla.org/citing-generative-ai/>

Morgan, B., & Fowers, B. (2022). Empathy and authenticity online: The roles of moral identity, moral disengagement, and parenting style. *Journal of Personality*, 90(2), 183–202. <https://doi.org/10.1111/jopy.12661>

Munzer, T. (2024, April 30). *How will artificial intelligence (AI) affect children?* HealthyChildren.Org. <https://www.healthychildren.org/English/family-life/Media/Pages/how-will-artificial-intelligence-AI-affect-children.aspx>

National Association for Media Literacy Education. (n.d.). *Understanding generative AI: A guide for parents*. Retrieved September 4, 2024, from <https://namle.org/wp-content/uploads/2024/06/genai-parents.pdf>

Nielsen, P., Favez, N., Liddle, H., & Rigter, H. (2019). Linking parental mediation practices to adolescents' problematic online screen use: A systematic literature review. *Journal of Behavioral Addictions*, 8(4), 649–663. <https://doi.org/10.1556/2006.8.2019.61>

O'Keeffe, G. S. (2016). Social media: Challenges and concerns for families. *Pediatric Clinics of North America*, 63(5), 841–849. <https://doi.org/10.1016/j.pcl.2016.06.009>

Ordoñez, L. (2024, September 17). *Parents' ultimate guide to generative AI*. Common Sense Media. <https://www.commonsensemedia.org/articles/parents-ultimate-guide-to-generative-ai>

Padilla-Walker, L. M., Stockdale, L. A., & McLean, R. D. (2020). Associations between parental media monitoring, media use, and internalizing symptoms during adolescence. *Psychology of Popular Media*, 9(4), 481–492. <https://doi.org/10.1037/ppm0000256>

parentintel. (2023, June 24). *Balancing your kids' screen time: Strategies for healthy tech habits and well-being*. Parent Intel. <https://parentintel.com/kids-screen-time/>

Parra, J. L., & Chatterjee, S. (2024). Social media and artificial intelligence: Critical conversations and where do we go from here? *Education Sciences*, 14(1), 68. <https://doi.org/10.3390/educsci14010068>

Perkins, M. (2023). Academic integrity considerations of AI Large Language Models in the post-pandemic era: ChatGPT and beyond. *Journal of University Teaching and Learning Practice*, 20(2). <https://doi.org/10.53761/1.20.02.07>

Prothero, A. (2024, February 19). *What is age-appropriate use of AI? 4 developmental stages to know about*. Education Week. <https://www.edweek.org/technology/what-is-age-appropriate-use-of-ai-4-developmental-stages-to-know-about/2024/02>

Read with Ello. (n.d.). Ello. Retrieved September 10, 2024, from <https://www.ello.com/>

Rubin, J., Chen, K., & Divanji, R. (2023). Thoughtful and ethical approaches to using AI in schools. *foundry10*. <https://www.foundry10.org/stories/thoughtful-and-ethical-approaches-to-using-ai-in-schools>

Song, Y., Weisberg, L. R., Zhang, S., Tian, X., Boyer, K. E., & Israel, M. (2024). A framework for inclusive AI learning design for diverse learners. *Computers and Education: Artificial Intelligence*, 6. <https://doi.org/10.1016/j.caai.2024.100212>

Su, J., & Yang, W. (2024). AI literacy curriculum and its relation to children's perceptions of robots and attitudes towards engineering and science: An intervention study in early childhood education. *Journal of Computer Assisted Learning*, 40(1), 241–253. <https://doi.org/10.1111/jcal.12867>

Sun, X., Haydel, K. F., Matheson, D., Desai, M., & Robinson, T. N. (2023). Are mobile phone ownership and age of acquisition associated with child adjustment? A 5-year prospective study among low-income Latinx children. *Child Development*, 94(1), 303–314. <https://doi.org/10.1111/cdev.13851>

Takeuchi, L., & Stevens, R. (2011). *The new coviewing: Designing for learning through joint media engagement* (pp. 1–75). The Joan Ganz Cooney Center at Sesame Workshop and LIFE Center. https://www.joanganzcooneycenter.org/wp-content/uploads/2011/12/jgc_coviewing_desktop.pdf

The Chicago Manual of Style. (n.d.). Q. *How do you recommend citing content developed or generated by artificial intelligence, such as ChatGPT?* [Online post]. Style Q&A. Retrieved September 4, 2024, from <https://www.chicagomanualofstyle.org/qanda/data/faq/topics/Documentation/faq0422.html>

UNICEF Office of Global Insight and Policy. (2021). *AI and children: AI guide for parents* (pp. 1–5). UNICEF. <https://www.unicef.org/innocenti/media/1361/file/UNICEF-Global-Insight-AI%20guide%20for%20parents-2021.pdf>

Vindrola-Padros, C. (2021). *Doing rapid qualitative research* (1st ed.). SAGE Publications Ltd. <https://us.sagepub.com/en-us/nam/doing-rapid-qualitative-research/book269300>

Wang, Q., Camacho, I., Jing, S., & Goel, A. K. (2022). Understanding the design space of AI-mediated social interaction in online learning: Challenges and opportunities. *Proceedings of the ACM on Human-Computer Interaction*, 6(CSCW1), 1–26. <https://doi.org/10.1145/3512977>

Weise, K., & Metz, C. (2023, May 1). *When A.I. chatbots hallucinate*. The New York Times. <https://www.nytimes.com/2023/05/01/business/ai-chatbots-hallucination.html>

Williams, R., Alghowinem, S., & Breazeal, C. (2024). Dr. R.O. Bott will see you now: Exploring AI for wellbeing with middle school students. *Proceedings of the AAAI Conference on Artificial Intelligence*, 38(21), 23309–23317. <https://doi.org/10.1609/aaai.v38i21.30379>

Woodruff, A., Shelby, R., Kelley, P. G., Rousso-Schindler, S., Smith-Loud, J., & Wilcox, L. (2024). How knowledge workers think generative AI will (not) transform their industries. *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems*, 1–26. <https://doi.org/10.1145/3613904.3642700>

World Economic Forum. (2023). *Future of jobs report 2023*. <https://www.weforum.org/publications/the-future-of-jobs-report-2023/in-full/>

Xu, Y., & Warschauer, M. (2020). What are you talking to?: Understanding children's perceptions of conversational agents. *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems*, 1–13. <https://doi.org/10.1145/3313831.3376416>

Yang, A. (2024, May 29). *AI image misinformation has surged, Google researchers find*. NBC News. <https://www.nbcnews.com/tech/tech-news/ai-image-misinformation-surged-google-research-finds-rcna154333>

Yim, I. H. Y., & Su, J. (2024). Artificial intelligence (AI) learning tools in K-12 education: A scoping review. *Journal of Computers in Education*. <https://doi.org/10.1007/s40692-023-00304-9>

Zhang, Z., Xu, Y., Wang, Y., Yao, B., Ritchie, D., Wu, T., Yu, M., Wang, D., & Li, T. J.-J. (2022). StoryBuddy: A human-AI collaborative chatbot for parent-child interactive storytelling with flexible parental involvement. *Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems*, 1–21. <https://doi.org/10.1145/3491102.3517479>

Supplement

PARTICIPANT DEMOGRAPHICS

TABLE S.1
Caregiver and Teen Survey Participant Demographics

Demographics		Caregivers (N = 2,568)	Teens (N = 283)
GENDER	Woman/Girl	65.5% (1,683)	50.9% (144)
	Man/Boy	34.5% (885)	48.8% (138)
	Chose not to answer	0% (0)	0.4% (1)
AGE	Mean age	42.18	15.5
HIGHEST LEVEL OF EDUCATION	Less than high school	4.4% (114)	3.5% (10)*
	High school graduate or equivalent	16.6% (425)	17.0% (48)*
	Some college/Associate's degree	34.2% (878)	35.7% (101)*
	Bachelor's degree	26.8% (689)	21.2% (60)*
	Post-graduate study/Professional degree	18.0% (462)	22.6% (64)*
HOUSEHOLD INCOME	Less than \$30,000	21.1% (541)	22.3% (63)
	\$30,000 to under \$60,000	21.5% (553)	26.5% (75)
	\$60,000 to under \$100,000	24.3% (623)	17.7% (50)
	\$100,000 or more	33.1% (851)	31.1% (88)
CURRENT EMPLOYMENT STATUS	Working - as a paid employee	65.9% (1692)	N/A
	Working - self-employed	10.1% (260)	N/A
	Not working - on temporary layoff from a job	1.5% (39)	N/A
	Not working - looking for work	5.0% (129)	N/A
	Not working - retired	2.6% (66)	N/A
	Not working - disabled	4.4% (113)	N/A
	Not working - other	10.5% (269)	N/A
REGION	West	23.1% (592)	21.2% (60)
	Midwest	31.9% (819)	32.5% (92)
	South	32.9% (844)	32.5% (92)
	Northeast	12.2% (313)	11.3% (32)

* Note. Teens were asked to provide demographic data on their caregivers for highest level of educational attainment, household income, and employment status.

TABLE S.2
Caregiver Focus Group Participant Demographics (N = 32)

Demographics		Percentage (Frequency)
GENDER	Woman	56.3% (18)
	Man	40.6% (13)
	Chose not to answer	3.1% (1)
AGE (M = 41.1)	25 - 34	15.6% (5)
	35 - 44	56.3% (18)
	45 - 54	21.9% (7)
	55 - 64	3.1% (1)
	65 - 74	3.1% (1)
RACE	Asian	12.5% (4)
	Black	28.1% (9)
	Hispanic	12.5% (4)
	White	40.6% (13)
	Other	6.3% (2)
HIGHEST LEVEL OF EDUCATION	Less than high school	3.1% (1)
	High school graduate or equivalent	6.3% (2)
	Some college/ Associate's degree	34.4% (11)
	Bachelor's degree	25% (8)
	Post-graduate study/ Professional degree	31.3% (10)
HOUSEHOLD INCOME	Less than \$30,000	21.9% (7)
	\$30,000 to under \$60,000	12.5% (4)
	\$60,000 to under \$100,000	18.8% (6)
	\$100,000 or more	46.9% (15)
REGION	West	15.6% (5)
	Midwest	31.3% (10)
	South	31.3% (10)
	Northeast	21.9% (7)

About foundry10

foundry10 is an education research organization with a philanthropic focus on expanding ideas about learning and creating direct value for youth. In collaboration with a wide range of partners, we surface, evaluate, and share opportunities to better support youth learning both inside and outside the classroom. Building on more than a decade of impactful work, our unique approach blends applied and experimental research, philanthropy, and education programs rooted in evidence-based best practices.

foundry10.org

(206) 686-9780

info@foundry10.org